Jean Sippy
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean Sippy.
Proceedings of the National Academy of Sciences of the United States of America | 2009
James M. Tsay; Jean Sippy; Michael Feiss; D. Smith
A key step in the assembly of many viruses is the packaging of DNA into preformed procapsids by an ATP-powered molecular motor. To shed light on the motor mechanism we used single-molecule optical tweezers measurements to study the effect of mutations in the large terminase subunit in bacteriophage λ on packaging motor dynamics. A mutation, K84A, in the putative ATPase domain driving DNA translocation was found to decrease motor velocity by ≈40% but did not change the force dependence or decrease processivity substantially. These findings support the hypothesis that a deviant “Walker A-like” phosphate-binding motif lies adjacent to residue 84. Another mutation, Y46F, was also found to decrease motor velocity by ≈40% but also increase slipping during DNA translocation by >10-fold. These findings support the hypothesis that viral DNA packaging motors contain an adenine-binding motif that regulates ATP hydrolysis and substrate affinity analogous to the “Q motif” recently identified in DEAD-box RNA helicases. We also find impaired force generation for the Y46F mutant, which shows that the Q motif plays an important role in determining the power and efficiency of the packaging motor.
Journal of Bacteriology | 2011
Jeremiah G. Johnson; Caitlin N. Murphy; Jean Sippy; Tylor J. Johnson; Steven Clegg
Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.
Journal of Molecular Biology | 1985
Michael Feiss; Jean Sippy; Greg Miller
Bacteriophage λ chromosomes are packaged in a polarized, sequential fashion from a multimeric DNA substrate. Mature chromosomes are generated when terminase introduces staggered nicks in the cohesive end sites (cos sites) bounding a chromosome. Packaging is polarized, to the initial and terminal cos sites for packaging a chromosome can be defined. To initiate packaging, terminase binds to cos at cosB, and subsequently cuts at cosN. To terminate packaging of a chromosome, a functional cosB is not required at the terminal cos. To explain this finding, it was proposed earlier that terminase scans for the terminal cosN, rather than any subsequent cosB, during packaging. In the work described here we performed helper packaging experiments to see whether processive action of terminase occurs during sequential packaging of λ chromosomes. The helper packaging experiments involve trilysogens; strains carrying three prophages in tandem. Infection by a hetero-immune helper phage results in packaging of the repressed prophage chromosomes, since the prophage structure is analogous to the normal DNA substrate. Two chromosomes can be packaged from between the three cos sites of the prophages of a trilysogen. Both chromosomes are packaged even when the central cos is cosB−. Our interpretation of these data is that (1) terminase is brought to the central cos by packaging; (2) following cleavage of the central cos, the terminase remains bound to the distal chromosome; and (3) terminase acts to begin packaging of the distal chromosome. The frequency at which terminase reads across the central cos to initiate packaging of the distal chromosome is in the range from 0.3 to 0.5 in our experiments. Reading across cos was found not to be greatly dependent on the state of cosB, indicating that cosB binding is only needed for packaging the first chromosome in a packaging series. A multilysogen was constructed in which the initial cos was cos+ and the distal cos sites were all cosB−. The initial and downstream chromosomes were found to be packaged. This result indicates that terminase that is brought to the central cos by packaging is not only able to initiate packaging of a downstream chromosome, but can also scan and terminate packaging of the downstream chromosome. A model is presented in which processive action of terminase is the basis for sequential packaging of λ chromosomes.
Journal of Biological Chemistry | 2010
James M. Tsay; Jean Sippy; Damian delToro; Benjamin T. Andrews; Bonnie Draper; Venigalla B. Rao; Carlos Enrique Catalano; Michael Feiss; Douglas E. Smith
Many double-stranded DNA viruses employ ATP-driven motors to translocate their genomes into small, preformed viral capsids against large forces resisting confinement. Here, we show via direct single-molecule measurements that a mutation T194M downstream of the Walker B motif in the phage λ gpA packaging motor causes an 8-fold reduction in translocation velocity without substantially changing processivity or force dependence, whereas the mutation G212S in the putative C (coupling) motif causes a 3-fold reduction in velocity and a 6-fold reduction in processivity. Meanwhile a T194M pseudorevertant (T194V) showed a near restoration of the wild-type dynamics. Structural comparisons and modeling show that these mutations are in a loop-helix-loop region that positions the key residues of the catalytic motifs, Walker B and C, in the ATPase center and is structurally homologous with analogous regions in chromosome transporters and SF2 RNA helicases. Together with recently published studies of SpoIIIE chromosome transporter and Ded1 RNA helicase mutants, these findings suggest the presence of a structurally conserved region that may be a part of the mechanism that determines motor velocity and processivity in several different types of nucleic acid translocases.
Journal of Molecular Biology | 1985
Michael Feiss; Susan Frackman; Jean Sippy
Lambdoid phage 21 requires the Escherichia coli integrative host factor (IHF) for growth. lambda-21 hybrids that have 21 DNA packaging specificity also require IHF. IHF-independent (her) mutants have been isolated. her mutations map in the amino-terminal half of the 21 1 gene. The 1 gene encodes the small subunit of the 21 terminase, and the amino-terminal half of the 1 polypeptide is a functional domain for specifically binding 21 DNA. Hence changes in the DNA-binding domain of terminase, her mutations, render 21 terminase able to function in the absence of IHF. Three of four her mutations studied are trans-dominant. An in vitro system was used to show that packaging of 21 DNA is IHF-dependent. IHF is directly required during the early, terminase-dependent steps of assembly. It is concluded that IHF is a host factor required for function of the 21 terminase. It is proposed, in analogy to the role of IHF in lambda integration, that IHF facilitates proper binding of 21 terminase to phage DNA. Consistent with this proposal, possible IHF-binding sites are present in the 21 cohesive end site.
Virology | 1983
Deborah A. Siegele; Susan Frackman; Jean Sippy; Timothy Momany; Thomas Michael Howard; Kit Tilly; Costa Georgopoulos; Michael Feiss
Physical and genetic maps of the head genes of lambdoid phage 21 have been made and compared with the head gene map of lambda. Because 21 and lambda have partial sequence homology throughout the head genes it was expected that the head genes of 21 would be analogous to those of lambda. Eight head genes of 21 have been identified and it was found that each of the genes is analogous in position, structure, and/or function to a lambda head gene. Phage 21 genes analogous to the lambda D and FI genes were not identified by mutation. Complementation studies between phage 21 and lambda mutants indicate that only gpFII (the protein product of a gene is referred to as gp (gene product] is fully interchangeable, gpW and gpD are partially interchangeable, and the rest of the head morphogenetic proteins are phage specific. In analogy with phage lambda, it is found that the gpNu3 analog (gp6) of phage 21 is synthesized from the same reading frame as the gpC analog (gp5), resulting in a protein identical to the carboxy terminus of gp5.
Molecular Microbiology | 2004
Jean Sippy; Michael Feiss
The development of bacteriophage λ and double‐stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, λ phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of λ, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When λ proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of λ, and although its capsid proteins share ∼60% residue identity with λ’s, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.
Genetics | 2010
Michael Feiss; Erin Reynolds; Morgan Schrock; Jean Sippy
The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminases ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between λ and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunits DNA-binding site. Each changes a cosBλ-specific base pair to a cosB21-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by λ-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which λ- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.
Virology | 2015
Jean Sippy; Priyal Patel; Nicole Vahanian; Rachel Sippy; Michael Feiss
The cos sites in λ and 21 chromosomes contain binding sites that recruit terminase to initiate DNA packaging. The small subunits of terminase, gpNu1 (λ) and gp1 (21), have winged helix-turn-helix DNA binding domains, where the recognition helixes differ in four of nine residues. To initiate packaging, the small subunit binds three R sequences in the cosB subsite. λ and 21 cannot package each other׳s DNA, due to recognition helix and R sequence differences. In λ and 21 cosBs, two bp, tri1 and tri2, are conserved in the R sequences yet differ between the phages; they are proposed to play a role in phage-specific packaging by λ and 21. Genetic experiments done with mixed and matched terminase and cosB alleles show packaging specificity depends on favorable contacts and clashes. These interactions indicate that the recognition helixes orient with residues 20 and 24 proximal to tri2 and tri1, respectively.
Virology | 2015
Michael Feiss; Henriette Geyer; Franco Klingberg; Norma Moreno; Amanda Forystek; Nasib Karl Maluf; Jean Sippy
Phage lambdas cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.