Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Soon Park is active.

Publication


Featured researches published by Jean Soon Park.


Nutrition & Metabolism | 2010

Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans.

Jean Soon Park; Jong Hee Chyun; Yoo Kyung Kim; Larry L Line; Boon P. Chew

BackgroundAstaxanthin modulates immune response, inhibits cancer cell growth, reduces bacterial load and gastric inflammation, and protects against UVA-induced oxidative stress in in vitro and rodent models. Similar clinical studies in humans are unavailable. Our objective is to study the action of dietary astaxanthin in modulating immune response, oxidative status and inflammation in young healthy adult female human subjects.MethodsParticipants (averaged 21.5 yr) received 0, 2, or 8 mg astaxanthin (n = 14/diet) daily for 8 wk in a randomized double-blind, placebo-controlled study. Immune response was assessed on wk 0, 4 and 8, and tuberculin test performed on wk 8.ResultsPlasma astaxanthin increased (P < 0.01) dose-dependently after 4 or 8 wk of supplementation. Astaxanthin decreased a DNA damage biomarker after 4 wk but did not affect lipid peroxidation. Plasma C-reactive protein concentration was lower (P < 0.05) on wk 8 in subjects given 2 mg astaxanthin. Dietary astaxanthin stimulated mitogen-induced lymphoproliferation, increased natural killer cell cytotoxic activity, and increased total T and B cell subpopulations, but did not influence populations of Thelper, Tcytotoxic or natural killer cells. A higher percentage of leukocytes expressed the LFA-1 marker in subjects given 2 mg astaxanthin on wk 8. Subjects fed 2 mg astaxanthin had a higher tuberculin response than unsupplemented subjects. There was no difference in TNF and IL-2 concentrations, but plasma IFN-γ and IL-6 increased on wk 8 in subjects given 8 mg astaxanthin.ConclusionTherefore, dietary astaxanthin decreases a DNA damage biomarker and acute phase protein, and enhances immune response in young healthy females.


Veterinary Immunology and Immunopathology | 2000

Dietary lutein stimulates immune response in the canine

Hong Wook Kim; Boon P. Chew; Teri S. Wong; Jean Soon Park; Brian C. Weng; Katherine M. Byrne; Michael G. Hayek; Gregory A. Reinhart

The possible immuno-modulatory action of dietary lutein in dogs is not known. Female Beagle dogs (17-18-month old; 11.4+/-0.4kg body weight) were supplemented daily with 0, 5, 10 or 20mg lutein for 12 weeks. Delayed-type hypersensitivity (DTH) response to saline, phytohemagglutinin (PHA) and a polyvalent vaccine was assessed on Weeks 0, 6 and 12. Blood was sampled on Weeks 0, 2, 4, 8 and 12 to assess (1) lymphocyte proliferative response to PHA, concanavalin A (Con A), and pokeweed mitogen (PWM), (2) changes in peripheral blood mononuclear cell (PBMC) populations, (3) interleukin-2 (IL-2) production and (4) IgG and IgM production. After the completion of 12-week study, we continued to collect the blood weekly up to 17 weeks to evaluate the changes in immunoglobulin production upon first and second antigenic challenges on Weeks 13 and 15. Plasma lutein+zeaxanthin was undetectable in unsupplemented dogs but concentrations increased (P<0.05) rapidly on Week 2 in lutein-supplemented dogs. Thereafter, concentrations generally continued to increase in dose-dependent manner, albeit at a much slower rate. Dogs fed lutein had heightened DTH response to PHA and vaccine by Week 6. Dietary lutein increased (P<0.05) lymphocyte proliferative response to all three mitogens and increased the percentages of cells expressing CD5, CD4, CD8 and major histocompatibility complex class II (MHC II) molecules. The production of IgG increased (P<0.05) in lutein-fed dogs after the second antigenic challenge. Lutein did not influence the expression of CD21 lymphocyte marker, plasma IgM or IL-2 production. Therefore, dietary lutein stimulated both cell-mediated and humoral immune responses in the domestic canine.


Veterinary Immunology and Immunopathology | 2000

Modulation of humoral and cell-mediated immune responses by dietary lutein in cats.

Hong Wook Kim; Boon P. Chew; Teri S. Wong; Jean Soon Park; Brian C. Weng; Katherine M. Byrne; Michael G. Hayek; Gregory A. Reinhart

The immuno-modulatory role of dietary lutein in domestic cats is unknown. Female Tabby cats (10-month old; n=56) were supplemented daily for 12 weeks with 0, 1, 5 or 10mg lutein. Blood was collected on Weeks 0, 2, 4, 8 and 12 to assess the following: (1) mitogen-induced peripheral blood mononuclear cells (PBMCs) proliferation, (2) changes in PBMC subpopulations, (3) interleukin-2 (IL-2) production and (4) plasma immunoglobulin (Ig)G production. In addition, delayed-type hypersensitivity (DTH) response to concanavalin A (Con A) or a polyvalent vaccine was performed on Weeks 0, 6 and 12. Dietary lutein increased plasma lutein concentrations in a dose-dependent manner (p<0.001) and concentrations had not reached steady state after 12 weeks of feeding in cats given 5 or 10mg lutein. Concentrations of plasma retinol and alpha-tocopherol were not influenced by diet. The DTH response to vaccine but not to Con A increased (p<0.05) in a dose-dependent manner on Week 6. Compared to control, cats fed lutein also showed enhanced Con A- and pokeweed mitogen-stimulated PBMCs proliferation. Dietary lutein also increased the percentages of CD4+ and CD21+ lymphocytes on Week 12 but had no significant effect on pan T, CD8 and MHC class II markers. Plasma IgG was higher (p<0.05) in cats fed 10mg lutein on Weeks 8 and 12. These results support the immuno-modulatory action of lutein in domestic cats.


Journal of Nutrition | 2011

Pigmented Potato Consumption Alters Oxidative Stress and Inflammatory Damage in Men

Kerrie L. Kaspar; Jean Soon Park; Charles R. Brown; Bridget D. Mathison; Duroy A. Navarre; Boon P. Chew

Pigmented potatoes contain high concentrations of antioxidants, including phenolic acids, anthocyanins, and carotenoids. These bioactive compounds have been implicated in the inhibition or prevention of cellular oxidative damage and chronic disease susceptibility. We assessed the effects of pigmented potato consumption on oxidative stress and inflammation biomarkers in adult males. Free-living healthy men (18-40 y; n = 12/group) consumed 150 g of cooked white- (WP), yellow- (YP), or purple-flesh potatoes (PP) once per day for 6 wk in a randomized study. Blood was collected at baseline and wk 6 to analyze total antioxidant capacity (TAC), DNA damage as assessed by plasma 8-hydroxydeoxyguanosine (8-OHdG), protein oxidation, lipid peroxidation, C-reactive protein (CRP), inflammatory cytokines, lymphoproliferation, NK cytotoxicity, and phenotypes. Potatoes were analyzed for TAC, phenolic acids, anthocyanins, and carotenoids. Compared with the WP group, the YP group had higher concentrations of phenolic acids (P < 0.002) and carotenoids (P < 0.001), whereas the PP group had higher concentrations of phenolic acids (P < 0.002) and anthocyanins (P < 0.001). Men who consumed YP and PP tended to have lower (P < 0.08) plasma IL-6 compared with those consuming WP. The PP group tended to have a lower plasma CRP concentration than the WP group (P = 0.07). The 8-OHdG concentration was lower in men who consumed either YP or PP compared with WP. Pigmented potato consumption reduced inflammation and DNA damage in healthy adult males. This offers consumers an improved nutritional choice in potato consumption.


Veterinary Immunology and Immunopathology | 2011

Dietary astaxanthin enhances immune response in dogs

Boon P. Chew; Bridget D. Mathison; Michael G. Hayek; Stefan Patrick Massimino; Gregory A. Reinhart; Jean Soon Park

No information is available on the possible role of astaxanthin on immune response in domestic canine. Female Beagle dogs (9-10 mo old; 8.2 ± 0.2 kg body weight) were fed 0, 10, 20 or 40 mg astaxanthin daily and blood sampled on wk 0, 6, 12, and 16 for assessing the following: lymphoproliferation, leukocyte subpopulations, natural killer (NK) cell cytotoxicity, and concentrations of blood astaxanthin, IgG, IgM and acute phase proteins. Delayed-type hypersensitivity (DTH) response was assessed on wk 0, 12 and 16. Plasma astaxanthin increased dose-dependently and reached maximum concentrations on wk 6. Dietary astaxanthin enhanced DTH response to vaccine, concanavalin A-induced lymphocyte proliferation (with the 20mg dose at wk 12) and NK cell cytotoxic activity. In addition, dietary astaxanthin increased concentrations of IgG and IgM, and B cell population. Plasma concentrations of C reactive protein were lower in astaxanthin-fed dogs. Therefore, dietary astaxanthin heightened cell-mediated and humoral immune response and reduced DNA damage and inflammation in dogs.


Nutrition and Cancer | 1999

Dietary Lutein But Not Astaxanthin or β-Carotene Increases pim-1 Gene Expression in Murine Lymphocytes

Jean Soon Park; Boon P. Chew; Teri S. Wong; Ji-Xiang Zhang; Nancy S. Magnuson

This study investigates the effect of dietary carotenoids on pim-1 gene expression in mouse splenocytes. Female BALB/c mice were fed 0%, 0.02%, or 0.4% astaxanthin, beta-carotene, and lutein for two weeks. Plasma and liver were obtained for the analysis of carotenoids. Splenocytes were isolated and cultured in the presence of concanavalin A, and the level of pim-1 mRNA was determined by Northern blot analysis. None of the carotenoids were detectable in the plasma and liver of unsupplemented mice. In plasma the concentration of astaxanthin (4.9-54.7 mumol/l) was dramatically higher than that of lutein (1.4-2.0 mumol/l) and beta-carotene (0.1-0.7 mumol/l). Carotenoid uptake by the spleen but not the liver reflected that observed in plasma. In mice fed 0.4% of each carotenoid, the absolute concentration of the carotenoid in the liver was highest for astaxanthin (24 nmol/g) followed by beta-carotene (7.5 nmol/g) and lutein (1.58 nmol/g). Mice fed lutein showed a dose-related increase in pim-1 mRNA expression. The steady-state level of pim-1 mRNA in mice fed 0.4% lutein was sixfold higher than in mice fed 0.02% lutein. In contrast, dietary astaxanthin and beta-carotene did not affect pim-1 expression. Therefore, an increase in pim-1 mRNA was observed in splenocytes stimulated with concanavalin A in lutein-fed mice. This appears to be a unique effect of lutein and may be associated with its antitumor activity observed in vivo.


Veterinary Immunology and Immunopathology | 2011

Astaxanthin stimulates cell-mediated and humoral immune responses in cats

Jean Soon Park; Bridget D. Mathison; Michael G. Hayek; Stefan Patrick Massimino; Gregory A. Reinhart; Boon P. Chew

Astaxanthin is a potent antioxidant carotenoid and may play a role in modulating immune response in cats. Blood was taken from female domestic shorthair cats (8-9 mo old; 3.2 ± 0.04 kg body weight) fed 0, 1, 5 or 10mg astaxanthin daily for 12 wk to assess peripheral blood mononuclear cell (PBMC) proliferation response, leukocyte subpopulations, natural killer (NK) cell cytotoxic activity, and plasma IgG and IgM concentration. Cutaneous delayed-type hypersensitivity (DTH) response against concanavalin A and an attenuated polyvalent vaccine was assessed on wk 8 (prior to vaccination) and 12 (post-vaccination). There was a dose-related increase in plasma astaxanthin concentrations, with maximum concentrations observed on wk 12. Dietary astaxanthin enhanced DTH response to both the specific (vaccine) and nonspecific (concanavalin A) antigens. In addition, cats fed astaxanthin had heightened PBMC proliferation and NK cell cytotoxic activity. The population of CD3(+) total T and CD4(+) T helper cells were also higher in astaxanthin-fed cats; however, no treatment difference was found with the CD8(+) T cytotoxic and MHC II(+) activated lymphocyte cell populations. Dietary astaxanthin increased concentrations of plasma IgG and IgM. Therefore, dietary astaxanthin heightened cell-mediated and humoral immune responses in cats.


Nutrition & Metabolism | 2010

Astaxanthin uptake in domestic dogs and cats

Jean Soon Park; Hong Wook Kim; Bridget D. Mathison; Michael G. Hayek; Stefan Patrick Massimino; Gregory A. Reinhart; Boon P. Chew

BackgroundResearch on the uptake and transport of astaxanthin is lacking in most species. We studied the uptake of astaxanthin by plasma, lipoproteins and leukocytes in domestic dogs and cats.MethodsMature female Beagle dogs (18 to 19 mo old; 11 to 14 kg BW) were dosed orally with 0, 0.1, 0.5, 2.5, 10 or 40 mg astaxanthin and blood taken at 0, 3, 6, 9, 12, 18 and 24 h post-administration (n = 8/treatment). Similarly, mature domestic short hair cats (12 mo old; 3 to 3.5 kg body weight) were fed a single dose of 0, 0.02, 0.08, 0.4, 2, 5, or 10 mg astaxanthin and blood taken (n = 8/treatment) at the same interval.ResultsBoth dogs and cats showed similar biokinetic profiles. Maximal astaxanthin concentration in plasma was approximately 0.14 μmol/L in both species, and was observed at 6 h post-dosing. The plasma astaxanthin elimination half-life was 9 to 18 h. Astaxanthin was still detectable by 24 h in both species. In a subsequent study, dogs and cats were fed similar doses of astaxanthin daily for 15 to 16 d and astaxanthin uptake by plasma, lipoproteins, and leukocytes studied. In both species, plasma astaxanthin concentrations generally continued to increase through d 15 or 16 of supplementation. The astaxanthin was mainly associated with high density lipoprotein (HDL). In blood leukocytes, approximately half of the total astaxanthin was found in the mitochondria, with significant amounts also associated with the microsomes and nuclei.ConclusionDogs and cats absorb astaxanthin from the diet. In the blood, the astaxanthin is mainly associated with HDL, and is taken up by blood leukocytes, where it is distributed to all subcellular organelles. Certain aspects of the biokinetic uptake of astaxanthin in dogs and cats are similar to that in humans.


Veterinary Immunology and Immunopathology | 2011

Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats.

Hyun Joo Park; Jean Soon Park; Michael G. Hayek; Gregory A. Reinhart; Boon P. Chew

The modulatory activity of dietary n-3 fatty acids on inflammation and immune response in domestic cats is unknown. Mature female cats (n=14/treatment) were fed control, fish oil or flaxseed oil diets with n-6:n-3 fatty acid ratios of 20:1, 5:1 and 5:1, respectively, for 12 wk. Immune response was assessed on wk 0, 6 and 12, and skin hypersensitivity response on wk 6 and 12. Fish oil increased (P<0.01) eicosapentaenoic and docosahexaenoic acids in plasma and skin, whereas flaxseed oil increased α-linolenic acid. Fish and flaxseed oils decreased (P<0.01) skin inflammatory response to histamine. Cats fed fish but not flaxseed oil had higher (P<0.05) skin leukotriene LTB(5), but not LTB(4). Fish and flaxseed oils lowered B, total T and T(h) subset populations, and leukocyte proliferative response to PWM (P<0.05). In contrast, there was no change in ConA- or PHA-induced lymphocyte proliferation, Tc and MHC II cell populations, DTH response, NK cytotoxicity, IL-2 production, or plasma IgG concentrations. Therefore, fish and flaxseed oil can reduce skin inflammatory responses in cats, however, flaxseed oil appears less immunosuppressive than fish oil.


Topics in clinical nutrition | 2008

Effects of Dietary and Supplemental Forms of Isoflavones on Thyroid Function in Healthy Postmenopausal Women

Tracy Ryan-Borchers; Boon P. Chew; Jean Soon Park; Michelle K. McGuire; Lisa R. Fournier; Kathy A. Beerman

Because of the health concerns associated with hormone replacement therapy, many women are seeking alternative therapies. Compounds such as soy isoflavones appear to reduce the risk of some age-related diseases and to lessen the severity of menopausal symptoms. However, concerns regarding harmful effects of soy isoflavones on thyroid function have been reported. This 16-week, double-blinded, placebo-controlled trial evaluated the effects of soy isoflavones on thyroid-stimulating hormone in healthy postmenopausal women. The results of this study suggest that isoflavones obtained from either soymilk or supplements have no effect on thyroid-stimulating hormone in well-nourished postmenopausal women.

Collaboration


Dive into the Jean Soon Park's collaboration.

Top Co-Authors

Avatar

Boon P. Chew

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Hayek

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teri S. Wong

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Brian C. Weng

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Hong Wook Kim

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerrie L. Kaspar

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge