Jean Vandenhaute
Université de Namur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean Vandenhaute.
Nature | 2005
Jean François Rual; Kavitha Venkatesan; Tong Hao; Tomoko Hirozane-Kishikawa; Amélie Dricot; Ning Li; Gabriel F. Berriz; Francis D. Gibbons; Matija Dreze; Nono Ayivi-Guedehoussou; Niels Klitgord; Christophe Simon; Mike Boxem; Jennifer Rosenberg; Debra S. Goldberg; Lan V. Zhang; Sharyl L. Wong; Giovanni Franklin; Siming Li; Joanna S. Albala; Janghoo Lim; Carlene Fraughton; Estelle Llamosas; Sebiha Cevik; Camille Bex; Philippe Lamesch; Robert S. Sikorski; Jean Vandenhaute; Huda Y. Zoghbi; Alex Smolyar
Systematic mapping of protein–protein interactions, or ‘interactome’ mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein–protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of ∼8,100 currently available Gateway-cloned open reading frames and detected ∼2,800 interactions. This data set, called CCSB-HI1, has a verification rate of ∼78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by ∼70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.
Science | 2011
M. Shahid Mukhtar; Anne-Ruxandra Carvunis; Matija Dreze; Petra Epple; Jens Steinbrenner; Jonathan D. Moore; Murat Tasan; Mary Galli; Tong Hao; Marc T. Nishimura; Samuel J. Pevzner; Susan E. Donovan; Lila Ghamsari; Balaji Santhanam; Viviana Romero; Matthew M. Poulin; Fana Gebreab; Bryan J. Gutierrez; Stanley Tam; Dario Monachello; Mike Boxem; Christopher J. Harbort; Nathan A. McDonald; Lantian Gai; Huaming Chen; Yijian He; Jean Vandenhaute; Frederick P. Roth; David E. Hill; Joseph R. Ecker
An analysis of protein-protein interactions in Arabidopsis identifies the plant interactome. Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.
Yeast | 2005
Pierre Hentges; Benoît Van Driessche; Lionel Tafforeau; Jean Vandenhaute; Antony M. Carr
The ease of construction of multiple mutant strains in Schizosaccharomyces pombe is limited by the number of available genetic markers. We describe here three new cassettes for PCR‐mediated gene disruption that can be used in combination with commonly used fission yeast markers to make multiple gene deletions. The natMX6, hphMX6 and bleMX6 markers give rise to resistance towards the antibiotics nourseothricin (NAT), hygromycin B and phleomycin, respectively. The cassettes are composed of exogenous sequences to increase the frequency of integration at targeted loci, and have a structure similar to the commonly used pFA6a–kanMX6 modular plasmid system. This allows a simple exchange of the kanMX6 marker in existing strains with any of the three new cassettes. Alternatively, oligonucleotide primers designed for the modular kanMX6 cassettes can be used to make the transforming PCR fragments for gene disruption. We illustrate the construction of a mutant strain with six independent gene disruptions, using the novel antibiotic cassettes in combination with existing genetic markers. Copyright
Nature Genetics | 2001
Jérôme Reboul; Philippe Vaglio; Nia Tzellas; Nicolas Thierry-Mieg; Troy Moore; Cindy Jackson; Tadasu Shin-I; Yuji Kohara; Danielle Thierry-Mieg; Jean Thierry-Mieg; Hongmei Lee; Joseph Hitti; Lynn Doucette-Stamm; James L. Hartley; Gary F. Temple; Michael A. Brasch; Jean Vandenhaute; Philippe Lamesch; David E. Hill; Marc Vidal
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or “ORFeomes,” need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.
Cellular Microbiology | 2005
David Fretin; A. Fauconnier; Stephan Köhler; S. Halling; Sandrine Leonard; C. Nijskens; Jonathan Ferooz; Pascal Lestrate; Rose-May Delrue; Isabelle Danese; Jean Vandenhaute; Anne Tibor; X. DeBolle; Jean-Jacques Letesson
Persistence infection is the keystone of the ruminant and human diseases called brucellosis and Malta fever, respectively, and is linked to the intracellular tropism of Brucella spp. While described as non‐motile, Brucella spp. have all the genes except the chemotactic system, necessary to assemble a functional flagellum. We undertook to determine whether these genes are expressed and are playing a role in some step of the disease process. We demonstrated that in the early log phase of a growth curve in 2YT nutrient broth, Brucella melitensis expresses genes corresponding to the basal (MS ring) and the distal (hook and filament) parts of the flagellar apparatus. Under these conditions, a polar and sheathed flagellar structure is visible by transmission electron microscopy (TEM). We evaluated the effect of mutations in flagellar genes of B. melitensis encoding various parts of the structure, MS ring, P ring, motor protein, secretion apparatus, hook and filament. None of these mutants gave a discernible phenotype as compared with the wild‐type strain in cellular models of infection. In contrast, all these mutants were unable to establish a chronic infection in mice infected via the intraperitoneal route, raising the question of the biological role(s) of this flagellar appendage.
Yeast | 2005
Benoît Van Driessche; Lionel Tafforeau; Pierre Hentges; Antony M. Carr; Jean Vandenhaute
The one‐step PCR‐mediated technique used for modification of chromosomal loci is a powerful tool for functional analysis in yeast. Both Saccharomyces cerevisiae and Schizosaccharomyces pombe are amenable to this technique. However, the scarce availability of selectable markers for Sz. pombe hampers the easy use of this technique in this species. Here, we describe the construction of new vectors deriving from the pFA6a family, which are suitable for tagging in both yeasts owing to the presence of a nourseothricin‐resistance cassette. These plasmids allow various gene manipulations at chromosomal loci, viz. N‐ and C‐terminal tagging with 3HA (haemagglutinin) or 13Myc epitopes, GST (glutathione S‐transferase), 4TAP (tandem affinity purification) and several GFP (green fluorescent protein) isoforms. For N‐terminal modifications, the use of different promoters allows constitutive (PADH1) or regulatable (PGAL1) promoters for S. cerevisiae and derivatives of Pnmt1 for Sz. pombe expression. Copyright
Yeast | 2003
Vincent Van Mullem; Maxime Wery; Xavier De Bolle; Jean Vandenhaute
The Gateway™ technology is becoming an increasingly popular method for cloning ORFs by recombination. It allows the transfer of any ORF flanked by specific recombination sites into any vectors harbouring the corresponding sites. Here we describe the construction of a set of 20 Saccharomyces cerevisiae Gateway™ compatible vectors. These plasmids bear an URA3 or TRP1 selection marker. They are designed for expression without tag sequence or for C‐ or N‐terminal protein tagging with 3HA (haemagglutinin), 13MYC, 4TAP (tandem affinity purification) or GST (glutathione S‐transferase) epitopes. The centromeric vectors allow expression of DNA sequence in yeast under tetracycline‐regulatable promoters, while expression from the high copy vectors is driven by PGK promoter. To test their applicability, the genes encoding the RNA polymerase I subunit Rpa12p or the TFIIS transcription factor were cloned in these vectors. Their expression was demonstrated using Western blotting or complementation assays. Copyright
Cellular Microbiology | 2011
Marie de Barsy; Alexandre Jamet; Didier Filopon; Cécile Nicolas; Géraldine Laloux; Jean François Rual; Alexandre Muller; Jean-Claude Twizere; Bernard Nkengfac; Jean Vandenhaute; David E. Hill; Suzana P. Salcedo; Jean Pierre Gorvel; Jean-Jacques Letesson; Xavier De Bolle
Bacteria of the Brucella genus are facultative intracellular class III pathogens. These bacteria are able to control the intracellular trafficking of their vacuole, presumably by the use of yet unknown translocated effectors. To identify such effectors, we used a high‐throughput yeast two‐hybrid screen to identify interactions between putative human phagosomal proteins and predicted Brucella spp. proteins. We identified a specific interaction between the human small GTPase Rab2 and a Brucella spp. protein named RicA. This interaction was confirmed by GST‐pull‐down with the GDP‐bound form of Rab2. A TEM‐β‐lactamase‐RicA fusion was translocated from Brucella abortus to RAW264.7 macrophages during infection. This translocation was not detectable in a strain deleted for the virB operon, coding for the type IV secretion system. However, RicA secretion in a bacteriological culture was still observed in a ΔvirB mutant. In HeLa cells, a ΔricA mutant recruits less GTP‐locked myc‐Rab2 on its Brucella‐containing vacuoles, compared with the wild‐type strain. We observed altered kinetics of intracellular trafficking and faster proliferation of the B. abortusΔricA mutant in HeLa cells, compared with the wild‐type control. Altogether, the data reported here suggest RicA as the first reported effector with a proposed function for B. abortus.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Monique Dewez; Fanelie Bauer; Marc Dieu; Martine Raes; Jean Vandenhaute; Damien Hermand
Modified nucleosides close to the anticodon are important for the proper decoding of mRNA by the ribosome. Particularly, the uridine at the first anticodon position (U34) of glutamate, lysine, and glutamine tRNAs is universally thiolated (S2U34), which is proposed to be crucial for both restriction of wobble in the corresponding split codon box and efficient codon–anticodon interaction. Here we show that the highly conserved complex Ctu1–Ctu2 (cytosolic thiouridylase) is responsible for the 2-thiolation of cytosolic tRNAs in the nematode and fission yeast. In both species, inactivation of the complex leads to loss of thiolation on tRNAs and to a thermosensitive decrease of viability associated with marked ploidy abnormalities and aberrant development. Increased level of the corresponding tRNAs suppresses the fission yeast defects, and our data suggest that these defects could result from both misreading and frame shifting during translation. Thus, a translation defect due to unmodified tRNAs results in severe genome instability.
The EMBO Journal | 2004
Maxime Wery; Elena K. Shematorova; Benoı̂t Van Driessche; Jean Vandenhaute; Pierre Thuriaux; Vincent Van Mullem
TFIIS, an elongation factor encoded by DST1 in Saccharomyces cerevisiae, stimulates transcript cleavage in arrested RNA polymerase II. Two components of the RNA polymerase II machinery, Med13 (Srb9) and Spt8, were isolated as two‐hybrid partners of the conserved TFIIS N‐terminal domain. They belong to the Cdk8 module of the Mediator and to a subform of the SAGA co‐activator, respectively. Co‐immunoprecipitation experiments showed that TFIIS can bind the Cdk8 module and SAGA in cell‐free extracts. spt8Δ and dst1Δ mutants were sensitive to nucleotide‐depleting drugs and epistatic to null mutants of the RNA polymerase II subunit Rpb9, suggesting that their elongation defects are mediated by Rpb9. rpb9Δ, spt8Δ and dst1Δ were lethal in cells lacking the Rpb4 subunit. The TFIIS N‐terminal domain is also strictly required for viability in rpb4Δ, although it is not needed for binding to RNA polymerase II or for transcript cleavage. It is proposed that TFIIS and the Spt8‐containing form of SAGA co‐operate to rescue RNA polymerase II from unproductive elongation complexes, and that the Cdk8 module temporarily blocks transcription during transcript cleavage.