Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Y. J. Wang is active.

Publication


Featured researches published by Jean Y. J. Wang.


Nature | 1999

The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.

JianGen Gong; Antonio Costanzo; Hong-Qiong Yang; Gerry Melino; William G. Kaelin; Massimo Levrero; Jean Y. J. Wang

Cancer chemotherapeutic agents such as cisplatin exert their cytotoxic effect by inducing DNA damage and activating programmed cell death (apoptosis). The tumour-suppressor protein p53 is an important activator of apoptosis. Although p53-deficient cancer cells are less responsive to chemotherapy, their resistance is not complete, which suggests that other apoptotic pathways may exist. A p53 -related gene, p73, which encodes several proteins as a result of alternative splicing,, can also induce apoptosis. Here we show that the amount of p73 protein in the cell is increased by cisplatin. This induction of p73 is not seen in cells unable to carry out mismatch repair and in which the nuclear enzyme c-Abl tyrosine kinase is not activated by cisplatin. The half-life of p73 is prolonged by cisplatin and by co-expression with c-Abl tyrosine kinase; the apoptosis-inducing function of p73 is also enhanced by the c-Abl kinase. Mouse embryo fibroblasts deficient in mismatch repair or in c-Abl do not upregulate p73 and are more resistant to killing by cisplatin. Our results indicate that c-Abl and p73 are components of a mismatch-repair-dependent apoptosis pathway which contributes to cisplatin-induced cytotoxicity.


Science | 2008

Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress

José R. Dinneny; Terri A. Long; Jean Y. J. Wang; Jee W. Jung; Daniel Mace; Solomon Pointer; Christa Barron; Siobhan M. Brady; John Schiefelbein; Philip N. Benfey

Little is known about the way developmental cues affect how cells interpret their environment. We characterized the transcriptional response to high salinity of different cell layers and developmental stages of the Arabidopsis root and found that transcriptional responses are highly constrained by developmental parameters. These transcriptional changes lead to the differential regulation of specific biological functions in subsets of cell layers, several of which correspond to observable physiological changes. We showed that known stress pathways primarily control semiubiquitous responses and used mutants that disrupt epidermal patterning to reveal cell-layer–specific and inter–cell-layer effects. By performing a similar analysis using iron deprivation, we identified common cell-type–specific stress responses and revealed the crucial role the environment plays in defining the transcriptional outcome of cell-fate decisions.


Molecular and Cellular Biology | 2000

p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps.

Zhenguo Wu; Pamela J. Woodring; Kunjan S. Bhakta; Kumiko Tamura; Fang Wen; James R. Feramisco; Michael Karin; Jean Y. J. Wang; Pier Lorenzo Puri

ABSTRACT The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogen-activated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs from those triggered by stress and cytokines, because it is not linked to Jun–N-terminal kinase stimulation and is maintained during the whole process of myotube formation. Moreover, p38 activation is independent of a parallel promyogenic pathway stimulated by insulin-like growth factor 1. Inhibition of p38 prevents the differentiation program in myogenic cell lines and human primary myocytes. Conversely, deliberate activation of endogenous p38 stimulates muscle differentiation even in the presence of antimyogenic cues. Much evidence indicates that p38 is an activator of MyoD: (i) p38 kinase activity is required for the expression of MyoD-responsive genes, (ii) enforced induction of p38 stimulates the transcriptional activity of a Gal4-MyoD fusion protein and allows efficient activation of chromatin-integrated reporters by MyoD, and (iii) MyoD-dependent myogenic conversion is reduced in mouse embryonic fibroblasts derived from p38α−/− embryos. Activation of p38 also enhances the transcriptional activities of myocyte enhancer binding factor 2A (MEF2A) and MEF2C by direct phosphorylation. With MEF2C, selective phosphorylation of one residue (Thr293) is a tissue-specific activating signal in differentiating myocytes. Finally, ERK shows a biphasic activation profile, with peaks of activity in undifferentiated myoblasts and postmitotic myotubes. Importantly, activation of ERK is inhibitory toward myogenic transcription in myoblasts but contributes to the activation of myogenic transcription and regulates postmitotic responses (i.e., hypertrophic growth) in myotubes.


Molecular Cell | 1997

Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation

Pier Lorenzo Puri; Vittorio Sartorelli; Xiang Jiao Yang; Yasuo Hamamori; Vasily V. Ogryzko; Bruce H. Howard; Larry Kedes; Jean Y. J. Wang; Adolf Graessmann; Yoshihiro Nakatani; Massimo Levrero

PCAF is a histone acetyltransferase that associates with p300/CBP and competes with E1A for access to them. While exogenous expression of PCAF potentiates both MyoD-directed transcription and myogenic differentiation, PCAF inactivation by anti-PCAF antibody microinjection prevents differentiation. MyoD interacts directly with both p300/CBP and PCAF, forming a multimeric protein complex on the promoter elements. Viral transforming factors that interfere with muscle differentiation disrupt this complex without affecting the MyoD-DNA interaction, indicating functional significance of the complex formation. Exogenous expression of PCAF or p300 promotes p21 expression and terminal cell-cycle arrest. Both of these activities are dependent on the histone acetyltransferase activity of PCAF, but not on that of p300. These results indicate that recruitment of histone acetyltransferase activity of PCAF by MyoD, through p300/CBP, is crucial for activation of the myogenic program.


Molecular and Cellular Biology | 1993

A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins.

J. R. Mcwhirter; D. L. Galasso; Jean Y. J. Wang

In Philadelphia chromosome-positive human leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and chimeric Bcr-Abl proteins are produced. The fused Bcr sequences activate the tyrosine kinase, actin-binding, and transforming functions of Abl. Activation of the Abl transforming function has been shown to require two distinct domains of Bcr: domain 1 (Bcr amino acids 1 to 63) and domain 2 (Bcr amino acids 176 to 242). The amino acid sequence of domain 1 indicates that it may be a coiled-coil oligomerization domain. We show here that domain 1 of Bcr forms a homotetramer. Tetramerization of Bcr-Abl through Bcr domain 1 correlates with activation of the tyrosine kinase and F-actin-binding functions of Abl. Disruption of the coiled coil by insertional mutagenesis inactivates the oligomerization function as well as the ability of Bcr-Abl to transform Rat-1 fibroblasts or to abrogate interleukin-3 dependence in lymphoid cells. These results strongly suggest that Bcr-Abl oligomers are the active entities in transformation.


Cell | 1999

Regulation of Histone Acetyltransferases p300 and PCAF by the bHLH Protein Twist and Adenoviral Oncoprotein E1A

Yasuo Hamamori; Vittorio Sartorelli; Vasily Ogryzko; Pier Lorenzo Puri; Hung Yi Wu; Jean Y. J. Wang; Yoshihiro Nakatani; Larry Kedes

Histone acetyltransferases (HAT) play a critical role in transcriptional control by relieving repressive effects of chromatin, and yet how HATs themselves are regulated remains largely unknown. Here, it is shown that Twist directly binds two independent HAT domains of acetyltransferases, p300 and p300/CBP-associated factor (PCAF), and directly regulates their HAT activities. The N terminus of Twist is a primary domain interacting with both acetyltransferases, and the same domain is required for inhibition of p300-dependent transcription by Twist. Adenovirus E1A protein mimics the effects of Twist by inhibiting the HAT activities of p300 and PCAF. These findings establish a cogent argument for considering the HAT domains as a direct target for acetyltransferase regulation by both a cellular transcription factor and a viral oncoprotein.


Molecular Cell | 1999

Acetylation of MyoD Directed by PCAF Is Necessary for the Execution of the Muscle Program

Vittorio Sartorelli; Pier Lorenzo Puri; Yasuo Hamamori; Vasily V. Ogryzko; Gene Chung; Yoshihiro Nakatani; Jean Y. J. Wang; Larry Kedes

p300/CBP and PCAF coactivators have acetyltransferase activities and regulate transcription, cell cycle progression, and differentiation. They are both required for MyoD activity and muscle differentiation. Nevertheless, their roles must be different since the acetyltransferase activity of PCAF but not of p300 is involved in controlling myogenic transcription and differentiation. Here, we provide a molecular explanation of this phenomenon and report that MyoD is directly acetylated by PCAF at evolutionarily conserved lysines. Acetylated MyoD displays an increased affinity for its DNA target. Importantly, conservative substitutions of acetylated lysines with nonacetylatable arginines impair the ability of MyoD to stimulate transcription and to induce muscle conversion indicating that acetylation of MyoD is functionally critical.


The Plant Cell | 2009

An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis

Sara V. Petersson; Annika I. Johansson; Mariusz Kowalczyk; Alexander Makoveychuk; Jean Y. J. Wang; Thomas Moritz; Markus Grebe; Philip N. Benfey; Göran Sandberg; Karin Ljung

Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein–marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.


Nature Medicine | 2001

Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase.

Paolo Vigneri; Jean Y. J. Wang

The chimeric BCR–ABL oncoprotein is the molecular hallmark of chronic myelogenous leukemia (CML). BCR–ABL contains nuclear import and export signals but it is localized only in the cytoplasm where it activates mitogenic and anti-apoptotic pathways. We have found that inhibition of the BCR–ABL tyrosine kinase, either by mutation or by the drug STI571, can stimulate its nuclear entry. By combining STI571 with leptomycin B (LMB) to block nuclear export, we trapped BCR–ABL in the nucleus and the nuclear BCR–ABL tyrosine kinase activates apoptosis. As a result, the combined treatment with STI571 and LMB causes the irreversible and complete killing of BCR–ABL transformed cells, whereas the effect of either drug alone is fully reversible. The combined treatment with STI571 and LMB also preferentially eliminates mouse bone marrow cells that express BCR–ABL. These results indicate that nuclear entrapment of BCR–ABL can be used as a therapeutic strategy to selectively kill chronic myelogenous leukemia cells.


The Plant Cell | 2005

Transcriptional Profile of the Arabidopsis Root Quiescent Center

Tal Nawy; Ji-Young Lee; Juliette Colinas; Jean Y. J. Wang; Sumena C. Thongrod; Jocelyn E. Malamy; Kenneth D. Birnbaum; Philip N. Benfey

The self-renewal characteristics of stem cells render them vital engines of development. To better understand the molecular mechanisms that determine the properties of stem cells, transcript profiling was conducted on quiescent center (QC) cells from the Arabidopsis thaliana root meristem. The AGAMOUS-LIKE 42 (AGL42) gene, which encodes a MADS box transcription factor whose expression is enriched in the QC, was used to mark these cells. RNA was isolated from sorted cells, labeled, and hybridized to Affymetrix microarrays. Comparisons with digital in situ expression profiles of surrounding tissues identified a set of genes enriched in the QC. Promoter regions from a subset of transcription factors identified as enriched in the QC conferred expression in the QC. These studies demonstrated that it is possible to successfully isolate and profile a rare cell type in the plant. Mutations in all enriched transcription factor genes including AGL42 exhibited no detectable root phenotype, raising the possibility of a high degree of functional redundancy in the QC.

Collaboration


Dive into the Jean Y. J. Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangli Suo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Eckmann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge