Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Yun Chang is active.

Publication


Featured researches published by Jean Yun Chang.


PLOS ONE | 2009

Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells

Qunying Hong; Chun I. Sze; Sing Ru Lin; Ming Hui Lee; Ruei Yu He; Lori Schultz; Jean Yun Chang; Shean-Jen Chen; Robert J. Boackle; Li Jin Hsu; Nan-Shan Chang

Background Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. Methodology/Principal Findings DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. Conclusions/Significance We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to failure of WOX1 activation.


PLOS ONE | 2009

Dramatic co-activation of WWOX/WOX1 with CREB and NF-κB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats

Meng Yen Li; Feng Jie Lai; Li Jin Hsu; Chen Peng Lo; Ching Li Cheng; Sing Ru Lin; Ming Hui Lee; Jean Yun Chang; Dudekula Subhan; Ming Shu Tsai; Chun I. Sze; Subbiah Pugazhenthi; Nan-Shan Chang; Shur Tzu Chen

Background Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. Methodology/Principal Findings Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-κB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-κB (40–65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-κB. WOX1 directly activated NF-κB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. Conclusions/Significance Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-κB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-κB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury.


Experimental Biology and Medicine | 2010

Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase

Jean Yun Chang; Ruei Yu He; Hsin Ping Lin; Li Jin Hsu; Feng Jie Lai; Qunying Hong; Shean-Jen Chen; Nan-Shan Chang

The family of WW domain-containing proteins contains over 2000 members. The small WW domain module is responsible, in part, for protein/protein binding interactions and signaling. Many of these proteins are located at the membrane/cytoskeleton area, where they act as adaptors to receive signals from the cell surface. In this review, we provide molecular insights regarding recent novel findings on signaling from the cell surface toward WW domain-containing oxidoreductase, known as WWOX, FOR or WOX1. More specifically, transforming growth factor beta 1 utilizes cell surface hyaluronidase Hyal-2 (hyaluronoglucosaminidase 2) as a cognate receptor for signaling with WWOX and Smad4 to control gene transcription, growth and death. Complement C1q alone, bypassing the activation of classical pathway, signals a novel event of apoptosis by inducing microvillus formation and WWOX activation. Deficiency in these signaling events appears to favorably support cancer growth.


Cell Death and Disease | 2010

TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease

Ming-Hui Lee; Sing-Ru Lin; Jean Yun Chang; Lori Schultz; John K. Heath; Li Jin Hsu; Yu-Min Kuo; Qunying Hong; Ming Fu Chiang; C. X. Gong; Chun I. Sze; Nan-Shan Chang

The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimers disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo.


Genes & Cancer | 2011

Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia

Hsin Ping Lin; Jean Yun Chang; Sing Ru Lin; Ming Hui Lee; Shenq Shyang Huang; Li Jin Hsu; Nan-Shan Chang

Not all leukemia T cells are susceptible to high levels of phorbol myristate acetate (PMA)-mediated apoptosis. At micromolar levels, PMA induces apoptosis of Jurkat T cells by causing mitochondrial polarization/de-polarization, release of cytosolic granules, and DNA fragmentation. Chemical inhibitors U0126 and PD98059 block mitogen-activated protein kinase kinase 1 (MEK1)-mediated phosphorylation of extracellular signal-regulated kinase (ERK) and prevent apoptosis. Mechanistically, proapoptotic tumor suppressor WOX1 (also named WWOX or FOR) physically interacts with MEK1, in part, in the lysosomes in Jurkat cells. PMA induces the dissociation, which leads to relocation of MEK1 to lipid rafts and WOX1 to the mitochondria for causing apoptosis. U0126 inhibits PMA-induced dissociation of WOX1/MEK1 complex and supports survival of Jurkat cells. In contrast, less differentiated Molt-4 T cells are resistant to PMA-induced dissociation of the WOX1/MEK1 complex and thereby are refractory to apoptosis. U0126 overturns the resistance for enhancing apoptosis in Molt-4 cells. Together, the in vivo MEK1/WOX1 complex is a master on/off switch for apoptosis in leukemia T cells.


Cell Death and Disease | 2012

TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death

Jean Yun Chang; Ming-Fu Chiang; Sing-Ru Lin; Ming-Hui Lee; H. He; Pei-Yi Chou; Szu-Jung Chen; Yu An Chen; L. Y. Yang; Feng Jie Lai; C. C. Hsieh; Ting Hui Hsieh; Hamm Ming Sheu; Chun I. Sze; Nan-Shan Chang

Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death.


Cell Death and Disease | 2014

Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib

An-Chi Tsai; Chiu-Hwa Wang; Jing-Ping Liou; Hui-Chen Pai; C. J. Hsiao; Jean Yun Chang; Jing-Chi Wang; Che-Ming Teng; Shiow-Lin Pan

Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.


Cell Death and Disease | 2015

A cascade of protein aggregation bombards mitochondria for neurodegeneration and apoptosis under WWOX deficiency

Chun I. Sze; Yu-Min Kuo; Li Jin Hsu; Tzu Fun Fu; Ming-Fu Chiang; Jean Yun Chang; Nan-Shan Chang

A cascade of protein aggregation bombards mitochondria for neurodegeneration and apoptosis under WWOX deficiency


Alzheimer's & Dementia: Translational Research & Clinical Interventions | 2017

Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation

Ming Hui Lee; Yao Hsiang Shih; Sing Ru Lin; Jean Yun Chang; Yu Hao Lin; Chun I. Sze; Yu-Min Kuo; Nan-Shan Chang

Zinc finger‐like protein that regulates apoptosis (Zfra) is a naturally occurring 31‐amino‐acid protein. Synthetic peptides Zfra1–31 and Zfra4–10 are known to effectively block the growth of many types of cancer cells.


Oncotarget | 2015

Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain

Jean Yun Chang; Ming Hui Lee; Sing Ru Lin; Li Yi Yang; H. Sunny Sun; Chun I. Sze; Qunying Hong; Yee Shin Lin; Ying Tsen Chou; Li Jin Hsu; Ming-Shiou Jan; Cheng Xin Gong; Nan-Shan Chang

Collaboration


Dive into the Jean Yun Chang's collaboration.

Top Co-Authors

Avatar

Nan-Shan Chang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Li Jin Hsu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chun I. Sze

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Ming Hui Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Sing Ru Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Feng Jie Lai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shean-Jen Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Yu-Min Kuo

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Hsin Ping Lin

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge