Jean-Yves Bleuyard
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Yves Bleuyard.
The EMBO Journal | 2004
Jean-Yves Bleuyard; Charles I. White
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51‐like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51‐like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51‐like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA‐damaging treatments, supporting the involvement of this Arabidopsis Rad51‐like protein in recombinational repair.
Chromosoma | 2004
Jean-Yves Bleuyard; Maria E. Gallego; Charles I. White
The Rad50, Mre11 and Xrs2/Nbs1 proteins, which form the highly conserved MRX complex, perform a wide range of functions concerning the maintenance and function of DNA in eukaryotes. These include recombination, DNA repair, replication, telomere homeostasis and meiosis. Notwithstanding the attention paid to this complex, the inviability of vertebrate rad50 and mre11 mutants has led to a relative lack of information concerning the role of these proteins in meiosis in higher eukaryotes. We have previously reported that Arabidopsis atrad50 mutant plants are viable and that atrad50 mutant plants are sterile. The present study reports an analysis of the causes of this sterility and the implication of the AtRad50 protein in meiosis. Both male and female gametogenesis are defective in the Arabidopsis atrad50 mutant and cytological observation of male meiosis indicates that in the absence of the AtRad50 protein, homologous chromosomes are unable to synapse. Finally, the atrad50 mutation leads to the destruction of chromosomes during meiosis. These phenotypes support a role for the Arabidopsis MRX complex in early stages of meiotic recombination.
Molecular Cell | 2012
Keiko Yata; Janette Lloyd; Sarah L. Maslen; Jean-Yves Bleuyard; Mark Skehel; Stephen J. Smerdon; Fumiko Esashi
Summary Homologous recombination (HR) plays an important role in the maintenance of genome integrity. HR repairs broken DNA during S and G2 phases of the cell cycle but its regulatory mechanisms remain elusive. Here, we report that Polo-like kinase 1 (Plk1), which is vital for cell proliferation and is frequently upregulated in cancer cells, phosphorylates the essential Rad51 recombinase at serine 14 (S14) during the cell cycle and in response to DNA damage. Strikingly, S14 phosphorylation licenses subsequent Rad51 phosphorylation at threonine 13 (T13) by casein kinase 2 (CK2), which in turn triggers direct binding to the Nijmegen breakage syndrome gene product, Nbs1. This mechanism facilitates Rad51 recruitment to damage sites, thus enhancing cellular resistance to genotoxic stresses. Our results uncover a role of Plk1 in linking DNA damage recognition with HR repair and suggest a molecular mechanism for cancer development associated with elevated activity of Plk1.
EMBO Reports | 2011
Jean-Yves Bleuyard; Rémi Buisson; Jean-Yves Masson; Fumiko Esashi
The partner and localizer of breast cancer 2 susceptibility protein (PALB2) is crucial for the repair of DNA damage by homologous recombination. Here, we report that chromatin‐association motif (ChAM), an evolutionarily conserved motif in PALB2, is necessary and sufficient to mediate its chromatin association in both unperturbed and damaged cells. ChAM is distinct from the previously described PALB2 DNA‐binding regions. Deletion of ChAM decreases PALB2 and Rad51 accumulation at DNA damage sites and confers cellular hypersensitivity to the genotoxic drug mitomycin C. These results suggest that PALB2 chromatin association via ChAM facilitates PALB2 function in the cellular resistance to DNA damage.
Cell Reports | 2014
Keiko Yata; Jean-Yves Bleuyard; Ryuichiro Nakato; Christine Ralf; Yuki Katou; Rebekka A. Schwab; Wojciech Niedzwiedz; Katsuhiko Shirahige; Fumiko Esashi
Summary Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.
Plant Molecular Biology | 2004
Jean-Yves Bleuyard; Maria E. Gallego; Charles I. White
Homologous recombination events occurring during meiotic prophase I ensure the proper segregation of homologous chromosomes at the first meiotic division. These events are initiated by programmed double-strand breaks produced by the Spo11 protein and repair of such breaks by homologous recombination requires a strand exchange activity provided by the Rad51 protein. We have recently reported that the absence of AtXrcc3, an ArabidopsisRad51 paralogue, leads to extensive chromosome fragmentation during meiosis, first visible in diplotene of meiotic prophase I. The present study clearly shows that this fragmentation results from un- or mis-repaired AtSpo11-1 induced double-strand breaks and is thus due to a specific defect in the meiotic recombination process.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Jean-Yves Bleuyard; Marjorie Fournier; Ryuichiro Nakato; Anthony M. Couturier; Yuki Katou; Christine Ralf; Svenja Hester; Daniel Dominguez; Daniela Rhodes; Timothy C. Humphrey; Katsuhiko Shirahige; Fumiko Esashi
Significance Partner and localiser of BRCA2 (PALB2) is a breast cancer susceptibility gene, and the role of its product in repairing broken chromosomes has been extensively described. However, a fraction of PALB2 is also found on intact chromosomes, and it is unknown how and why PALB2 associates with undamaged chromatin. In this study, we establish that the histone binding protein MRG15 is a major interaction partner of PALB2 and plays a key role in tethering PALB2 to active genes. Failure of PALB2 to interact with MRG15 leads to the accumulation of DNA stress at active genes and chromosome instability in dividing cells. These findings shed light on why patients with PALB2 mutations often develop genome instability syndromes, such as cancer. The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.
Plant Journal | 2004
Jean-Yves Bleuyard; Maria E. Gallego; Florence Savigny; Charles I. White
Plant Journal | 2003
Maria E. Gallego; Jean-Yves Bleuyard; S. Daoudal-Cotterell; N. Jallut; Charles I. White
DNA Repair | 2006
Jean-Yves Bleuyard; Maria E. Gallego; Charles I. White