Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanette M. Rotchell is active.

Publication


Featured researches published by Jeanette M. Rotchell.


Gene | 2015

Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species

Kazue Nagasawa; Nicholas Treen; Reki Kondo; Yurika Otoki; Naoki Itoh; Jeanette M. Rotchell; Makoto Osada

Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds.


Journal of Applied Toxicology | 2015

Silver nanoparticles affect the neural development of zebrafish embryos

Qi Xin; Jeanette M. Rotchell; Jinping Cheng; Jun Yi; Qiang Zhang

Silver nanoparticles (AgNPs) have been widely used in commercial products. This study aims to understand the impact of AgNPs on the early developmental stages in zebrafish (Danio rerio) embryos. Embryos were exposed to two sizes of AgNPs at three dose levels, as well to free Ag+ ions, for a range of 4–96u2009h post‐fertilization (hpf). The acute exposure study showed that exposure to AgNPs affected the neurological development, and the exposed embryos exhibited anomalies such as small head with hypoplastic hindbrain, small eye and cardiac defects. At the molecular level, AgNPs altered the expression profiles of neural development‐related genes (gfap, huC and ngn1), metal‐sensitive metallothioneins and ABCC genes in exposed embryos. The expression of AhR2 and Cyp1A, which are usually considered to mediate polycyclic aromatic hydrocarbon toxicity, were also significantly changed. A size‐dependent uptake of AgNPs was observed, whereby 4u2009nm AgNPs were more efficiently taken up compared with the 10u2009nm‐sized particles. Importantly, the head area accumulated AgNPs more efficiently than the trunk area of exposed zebrafish embryos. No free Ag+ ions, which can be potentially released from the AgNP solutions, were detected. This study suggests that AgNPs could affect the neural development of zebrafish embryos, and the toxicity of AgNPs may be partially attributed to the comparatively higher uptake in the head area. These results indicate the potential neurotoxicity of AgNPs and could be extended to other aquatic organisms. Copyright


Environmental Science & Technology | 2014

Genetic alterations and cancer formation in a European flatfish at sites of different contaminant burdens.

Adélaïde Lerebours; Grant D. Stentiford; Brett P. Lyons; John P. Bignell; Stéphane A.P. Derocles; Jeanette M. Rotchell

Fish diseases are an indicator for marine ecosystem health since they provide a biological end-point of historical exposure to stressors. Liver cancer has been used to monitor the effects of exposure to anthropogenic pollution in flatfish for many years. The prevalence of liver cancer can exceed 20%. Despite the high prevalence and the opportunity of using flatfish to study environmentally induced cancer, the genetic and environmental factors driving tumor prevalence across sites are poorly understood. This study aims to define the link between genetic deterioration, liver disease progression, and anthropogenic contaminant exposures in the flatfish dab (Limanda limanda). We assessed genetic changes in a conserved cancer gene, Retinoblastoma (Rb), in association with histological diagnosis of normal, pretumor, and tumor pathologies in the livers of 165 fish from six sites in the North Sea and English Channel. The highest concentrations of metals (especially cadmium) and organic chemicals correlated with the presence of tumor pathology and with defined genetic profiles of the Rb gene, from these sites. Different Rb genetic profiles were found in liver tissue near each tumor phenotype, giving insight into the mechanistic molecular-level cause of the liver pathologies. Different Rb profiles were also found at sampling sites of differing contaminant burdens. Additionally, profiles indicated that histological normal fish from Dogger sampling locations possessed Rb profiles associated with pretumor disease. This study highlights an association between Rb and specific contaminants (especially cadmium) in the molecular etiology of dab liver tumorigenesis.


Environmental Pollution | 2014

Evidence of altered fertility in female roach (Rutilus rutilus) from the River Seine (France).

M. Gerbron; P. Geraudie; Denise Fernandes; Jeanette M. Rotchell; Cinta Porte; Christophe Minier

A large variety of anthropogenic chemicals present in the aquatic environment have been shown to be able to alter the endocrine system of exposed organisms, potentially impacting their reproductive function. The aim of this study was to assess the effects of environmental pollution on the reproductive system of wild female roach (Rutilus rutilus) from the Seine River (Normandy, France). A suite of biomarkers of endocrine disruption including gonado-somatic index, plasmatic vitellogenin, gonadal aromatase activity and histological parameters (oocyte diameter and gonad maturation) were studied. Female fish from the polluted sites showed a number of reproductive alterations, including inhibited gonad maturation, reduced oocyte growth, reduced levels of plasmatic vitellogenin and 3-fold lower gonadal aromatase activity than females collected in the reference site. Overall, these results highlight the presence of endocrine disruption in female roach from the Seine River.


Ecotoxicology | 2012

Transcriptional responses of cancer-related genes in turbot Scophthalmus maximus and mussels Mytilus edulis exposed to heavy fuel oil no. 6 and styrene.

Pamela Ruiz; Amaia Orbea; Jeanette M. Rotchell; Miren P. Cajaraville

Recent spills in European waters have released polycyclic aromatic hydrocarbons, important components of heavy fuel oil, and the hydrocarbon styrene. Heavy fuel oil and styrene are classified as potentially genotoxic and carcinogenic. Here we investigate transcription of genes involved in cancer development in the liver of juvenile turbots and in the digestive gland of mussels exposed to heavy fuel oil and to styrene and after a recovery period. In turbot, oil produced a significant up-regulation of p53 and gadd45α after 14xa0days exposure. cyclin G1 was up-regulated after 7xa0days treatment with styrene. In mussels, ras was down-regulated in both treatments after the recovery periods. No mutations in ras hotspots were detected in exposed mussels. gadd45α was up-regulated after the recovery period of the styrene experiment. Overall, transcriptional responses differed in mussels compared to turbot. Turbot responded to hydrocarbon exposure by triggering cell cycle arrest (p53) and DNA repair (gadd45α).


Ecotoxicology | 2016

Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior.

Liyuan Qiang; Jinping Cheng; Jun Yi; Jeanette M. Rotchell; Xiaotong Zhu; Junliang Zhou

Environmental pollution caused by pharmaceuticals has been recognized as a major threat to the aquatic ecosystems. Carbamazepine, as the widely prescribed antiepileptic drug, has been frequently detected in the aquatic environment and has created concerns about its potential impacts in the aquatic organisms. The effects of carbamazepine on zebrafish embryos were studied by examining their phenotype, behavior and molecular responses. The results showed that carbamazepine disturbed the normal growth and development of exposed zebrafish embryos and larvae. Upon exposure to carbamazepine at 1xa0μg/L, the hatching rate, body length, swim bladder appearance and yolk sac absorption rate were significantly increased. Embryos in treatment groups were more sensitive to touch andxa0light stimulation. At molecular level, exposure to an environmentally relevant concentration (1xa0μg/L) of carbamazepine disturbed the expression pattern of neural-related genes of zebrafish embryos and larvae. This study suggests that the exposure of fish embryo to antiepileptic drugs, at environmentally relevant concentrations, affects their early development and impairs their behavior. Such impacts may have future repercussions by affecting fish population structure.


Science of The Total Environment | 2015

Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.

Lingling Hu; Jingmin Zhu; Jeanette M. Rotchell; Lijiao Wu; Jinjuan Gao; Huahong Shi

The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the developmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin, CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we proposed a phenotypic assessment method with 20 phenotypes and a 0-5 scoring system. This derived index exhibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype profiles were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for increased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information for each tested chemical.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2011

Molecular Toxicology of Corals: A Review

Jeanette M. Rotchell; Gary K. Ostrander

Coral reefs worldwide have become increasingly affected by a phenomenon known as ”coral bleaching,” the loss of the symbiotic algae from the host corals. The underlying causes and mechanism(s) of coral bleaching are not well known, although several have been hypothesized. While coral bleaching has been a primary focus in recent years, corals respond differentially to numerous environmental stresses. The impacts of heat, hydrocarbons, salinity, sewage effluents, biocides, heavy metals, and ultraviolet light have been investigated in both laboratory experiments and field surveys among multiple coral species. Herein what is known regarding the biological impacts of such stresses on corals at the molecular level of organization is summarized. The objective is to focus attention at the early stages of biological effects in order to encourage and facilitate research that provide ways to understand how changes at the molecular level might elucidate processes likely occurring at the population level. This, in turn, should accelerate studies that may elucidate the cellular and physiological changes contributing to coral decline, rather than just document the continued global loss of coral diversity and abundance.


Ecotoxicology and Environmental Safety | 2016

Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii

Janine Wäge; Adélaïde Lerebours; Jörg D. Hardege; Jeanette M. Rotchell

Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms calcification rate, shell structure and energy metabolism have been reported in the literature. To date, little is known about the molecular mechanisms altered under low pH exposure, especially in non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have been identified as differentially regulated. These are involved in processes previously considered as indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that mechanisms of impact may include additional pathways not previously identified as impacted by low pH in other species.


Marine Pollution Bulletin | 2015

Effects of low seawater pH on the marine polychaete Platynereis dumerilii

Janine Wäge; Jörg D. Hardege; Tomas Larsson; Oleg Simakov; Emma C. Chapman; Detlev Arendt; Jeanette M. Rotchell

An important priority for any organism is to maintain internal cellular homeostasis including acid-base balance. Yet, the molecular level impacts of changing environmental conditions, such as low pH, remain uncharacterised. Herein, we isolate partial Na(+)/H(+)exchangers (NHE), carbonic anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and investigate their relative expression in acidified seawater conditions. mRNA expression of NHE was significantly down-regulated after 1h and up-regulated after 7days under low pH treatment (pH 7.8), indicating changes in acid-base transport. Furthermore, the localisation of NHE expression was also altered. A trend of down regulation in CA after 1h was also observed, suggesting a shift in the CO2 and HCO3(-) balance. No change in CaM expression was detected after 7days exposure to acidified seawater. This study provides insight into the molecular level changes taking place following exposure to acidified seawater in a non-calcifying, ubiquitous, organism.

Collaboration


Dive into the Jeanette M. Rotchell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huahong Shi

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jun Yi

East China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge