Jeanette Schadow
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeanette Schadow.
NeuroImage | 2006
Niko A. Busch; Jeanette Schadow; Ingo Fründ; Christoph Herrmann
The early visual gamma-band response is an oscillatory signal evoked approximately 100 ms after stimulation. While some studies have found effects of various cognitive processes on this signal, such effects could not be replicated in other studies. Accordingly, some authors have claimed that evoked gamma-band activity reflects merely sensory functions. To resolve these conflicting positions, we conducted a target detection experiment in which the feature that defined the target could be distributed over a large or a small part of the entire stimulus. Only targets covering a larger area of the entire stimulus evoked stronger gamma-band activity than standards although the over-all stimulus size was identical for all stimuli. This increase in evoked activity resulted from stronger oscillatory power and not exclusively from stronger phase-locking. In contrast, N1 and P3 amplitudes were larger for target stimuli irrespective of the distribution of the relevant stimulus feature. These results are consistent with the notion that early gamma-band activity is generated by feature-selective neural assemblies the activity of which can in fact be modulated by top-down processes. This interaction, however, may be only detectable in scalp-recorded EEG if it affects a sufficient number of neural assemblies.
Brain Research | 2008
Daniel Lenz; Kerstin Krauel; Jeanette Schadow; Lioba Baving; Emrah Düzel; Christoph Herrmann
Previous electrophysiological as well as imaging research has contributed to the understanding of impairments in attention, executive functions, and memory in patients with attention-deficit/hyperactivity disorder (ADHD). However, there is a lack of studies investigating ADHD related differences in the gamma range of human electroencephalogram (EEG), although gamma activity is strongly associated with cognitive processes impaired in ADHD patients and is also modulated by dopamine polymorphisms linked with ADHD. To close this gap, the present study compared gamma activity in ADHD children with that of healthy controls and correlated it with memory performance. EEG was recorded from 13 ADHD patients as well as 13 healthy control subjects during the encoding phase of a visual memory paradigm. In a subsequent recognition test, participants had to judge pictures as being old or new. Analysis of evoked gamma-band responses (GBRs) during stimulus encoding revealed a strong task-related enhancement for ADHD patients in parieto-occipital areas. Interestingly, this augmentation was not associated with recognition performance, whereas healthy subjects exhibited a strong positive correlation between evoked gamma activity during stimulus encoding and subsequent recognition performance. We interpret this finding as evidence of enhanced excitation levels and unspecific activation of processing resources in ADHD patients. Furthermore, enhanced GBRs in ADHD could also indicate a decrease of neuronal signal-to-noise ratio, partially caused by the genetic variations within the dopaminergic pathway of ADHD patients. The involved genetic polymorphisms have been shown to modulate evoked GBRs, which therefore could be a possible marker of impaired neurotransmission in ADHD.
BMC Neuroscience | 2007
Ingo Fründ; Niko A. Busch; Jeanette Schadow; Ursula Körner; Christoph Herrmann
BackgroundPhase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes.ResultsWe measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials.ConclusionThese results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes.
Frontiers in Human Neuroscience | 2009
Tino Zaehle; Ingo Fründ; Jeanette Schadow; Stefanie Thärig; Mircea Ariel Schoenfeld; Christoph Herrmann
The time course of local field potentials (LFPs) displaying typical discharge frequencies in the gamma frequency range highly correlates with the blood oxygen level dependent (BOLD) signal in response to rotating checkerboard stimuli in animals. In humans, oscillatory gamma-band responses (GBRs) show strong inter-individual variations in frequency and amplitude but considerable intra-individual reliability indicating that individual gamma activity reflects a personal trait. While the functional role of these GBRs is still debated, investigations combining electroencephalography–functional magnetic resonance imaging (EEG–fMRI) measurements provide a tool to obtain further insights into the underlying functional architecture of the human brain and will shed light onto the understanding of the dynamic relation between the BOLD signal and the properties of the electrical activity recorded on the scalp. We investigated the relation between the hemodynamic response and evoked gamma-band response (eGBR) to visual stimulation. We tested the hypothesis that the amplitude of human eGBRs and BOLD responses covary intra-individually as a function of stimulation as well as inter-individually as a function of gamma-trait. Seventeen participants performed visual discrimination tasks during separate EEG and fMRI recordings. Results revealed that visual stimuli that evoked high GBRs also elicited strong BOLD responses in the human V1/V2 complex. Furthermore, inter-individual variations of BOLD responses to visual stimuli in the bilateral primary (Area 17) and secondary (Area V5/MT) visual cortex and the right hippocampal formation were correlated with the individual gamma-trait of the subjects. The present study further supports the notion that neural oscillations in the gamma frequency range are involved in the cascade of neural processes that underlie the hemodynamic responses measured with fMRI.
Brain Research | 2008
Daniel Lenz; Marcus Jeschke; Jeanette Schadow; Nicole Naue; Frank W. Ohl; Christoph Herrmann
Auditory perception comprises bottom-up as well as top-down processes. While research in the past has revealed many neural correlates of bottom-up processes, less is known about top-down modulation. Memory processes have recently been associated with oscillations in the gamma-band of human EEG (30 Hz and above) which are enhanced when incoming information matches a stored memory template. Therefore, we investigated event-related potentials (ERPs) and gamma-band activity in 17 healthy participants in a Go/NoGo-task. They listened to four frequency-modulated (FM) sounds which varied regarding the frequency range traversed and the direction of frequency modulation. One sound was defined as target and required a button press. The results of ERPs (N1, P2, N2, and P3) were consistent with previous studies. Analysis of evoked gamma-band responses yielded no significant task-dependent modulation, but we observed a stimulus dependency, which was also present in a control experiment: The amplitude of evoked gamma responses showed an inverted U-shape as a function of stimulus frequency. Investigation of total gamma activity revealed functionally relevant responses at high frequencies (90 Hz to 250 Hz), which showed significant modulations by matches with STM: Complete matches led to the strongest enhancements (starting around 100 ms after stimulus onset) and partial matches resulted in intermediate ones. The results support the conclusion that very high frequency oscillations (VHFOs) are markers of active stimulus discrimination in STM matching processes and are attributable to higher cognitive functions.
Vision Research | 2007
Ingo Fründ; Niko A. Busch; Ursula Körner; Jeanette Schadow; Christoph Herrmann
Physical properties of visual stimuli affect electrophysiological markers of perception. One important stimulus property is spatial frequency (SF). Therefore, we studied the influence of SF on human alpha (8-13 Hz) and gamma (>30 Hz) electroencephalographic (EEG) responses in a choice reaction task. Since real world images contain multiple SFs, an SF mixture was also examined. Event related potentials were modulated by SF around 80 and 300 ms. Evoked gamma responses were strongest for the low SF and the mixture stimulus; alpha responses were strongest for high SFs. The results link evoked and induced alpha and evoked gamma responses in human EEG to different modes of stimulus processing.
Neuropsychologia | 2009
Jeanette Schadow; Nicole Dettler; Galina V. Paramei; Daniel Lenz; Ingo Fründ; Bernhard A. Sabel; Christoph Herrmann
Gamma-band responses (GBRs) are associated with Gestalt perception processes. In the present EEG study, we investigated the effects of perceptual grouping on the visual GBR in the perimetrically intact visual field of patients with homonymous hemianopia and compared them to healthy participants. All observers were presented either random arrays of Gabor elements or arrays with an embedded circular arrangement. For the hemianopic patients, the circle was presented in their intact hemifield only. For controls, the hemifield for the circle presentation was counterbalanced across subjects. The participants were instructed to detect the circle by pressing a corresponding button. A wavelet transform based on Morlet wavelets was employed for the calculation of oscillatory GBRs. The early evoked GBR exhibited a larger amplitude and shorter latency for the healthy group compared to hemianopic patients and was associated with behavioral measures. The late total GBR between 200 and 400ms after stimulus onset was significantly increased for Gestalt-like patterns in healthy participants. This effect was not manifested in patients. The present findings indicate deficits in the early and late visual processing of Gestalt patterns even in the intact hemifield of hemianopic patients compared to healthy participants.
NeuroImage | 2009
Jeanette Schadow; Daniel Lenz; Nicole Dettler; Ingo Fründ; Christoph Herrmann
For efficient and fast encoding of our complex acoustic environment, not only aspects of bottom-up processing are significant, but rather top-down influences such as attention, memory, and anticipation promote specific behavior and perception. Neural oscillatory activity in the gamma-range (30-80 Hz) is discussed as a conceivable candidate to represent very rapid modulations of top-down factors. We investigated effects of anticipation on early gamma-band responses (GBRs) of the EEG and event-related potentials (ERPs) in response to tone sequences. These sequences were composed of six sinusoidal tones, which could be either regularly ascending or descending in frequency. Thus, the sequences reflected a good continuation of pitch, which also resulted in the buildup of strong expectancies for the upcoming stimulus within the sequence. However, some of the tone sequences contained a violation of the good continuation of pitch at the third or fifth tone position. The early phase-locked portion of the gamma-band activity was significantly increased when tones were in line with the good continuation of sequences compared to deviant tones. Further, a pronounced early negative ERP response, starting at 150 ms, was elicited by deviant tones at the third and fifth position. Our results support the notion that gamma-band oscillations reflect perceptual grouping processes of concurrent sounds and anticipatory top-down modulation, which involves some of the first stages of auditory information processing.
Neuropsychologia | 2010
Daniel Lenz; Kerstin Krauel; Hans-Henning Flechtner; Jeanette Schadow; Hermann Hinrichs; Christoph Herrmann
Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90ms after visual stimulation in human EEG, have been assigned a pivotal role in early visual processing. In particular, they are involved in memory matching processes and are enhanced when known stimuli are processed. The current study examined whether evoked GBR patterns during early memory matching processes could be indicative of an early visual processing deficit in ADHD patients. EEG was recorded from 13 young ADHD patients as well as 13 age-matched healthy participants. Both groups performed a simple forced choice reaction task employing line drawings of either known real-world items with representations in long-term memory or physically similar unknown items without such representations. Evoked GBRs of ADHD patients did not differentiate between known and unknown items. However, in healthy children, evoked GBRs were enhanced when stimuli matched a representation stored in memory. This finding indicates disadvantages at early visual processing stages in ADHD patients: In contrast to healthy participants, ADHD children lack an early memory based classification, possibly resulting in an impaired ability to rapidly reallocate attentional resources to relevant stimuli. These findings suggest that impaired early automatic stimulus classification in ADHD patients could be involved in deficits of selective and sustained attention.
International Journal of Psychophysiology | 2011
Daniel Lenz; Susanne Fischer; Jeanette Schadow; Bernhard Bogerts; Christoph Herrmann
Evoked gamma-band responses (GBRs) were shown to be involved in different aspects of human cognition and behavior. They have been linked to the integration and processing of incoming information leading to an adequate behavioral outcome. Consequently, altered evoked GBRs have been associated with impaired cognitive and behavioral states present in a variety of psychiatric disorders. However, to the best of our knowledge, there are no reports directly comparing evoked GBRs of different clinical groups in the same experimental setting. Thus, the purpose of the present study was to shed light on the question, whether evoked GBRs, as a kind of a neurophysiological biomarker of pathological states, might serve for characterization and distinguishing of groups suffering from diverse psychiatric disorders. We measured EEG during a passive auditory oddball-paradigm. Participants were patients diagnosed with schizophrenia, mood disorder, and personality disorders as well as a fourth group consisting of healthy participants. Our results indicate that evoked GBRs significantly differed from healthy participants only in schizophrenic patients whereas no difference could be observed for the other clinical groups. Our findings support the notion that early evoked GBRs could be indeed a trait variable of schizophrenia and are not a general marker of pathological brain states.