Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanine Ballard is active.

Publication


Featured researches published by Jeanine Ballard.


Aaps Journal | 2013

Drug-drug interaction studies: regulatory guidance and an industry perspective.

Thomayant Prueksaritanont; Xiaoyan Chu; Christopher R. Gibson; Donghui Cui; Ka Lai Yee; Jeanine Ballard; Tamara Cabalu; Jerome H. Hochman

Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug–drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes. We hope to convey the need for conducting DDI studies on a case-by-case basis using a holistic scientifically based interrogative approach and to communicate the need for additional research to fill in knowledge gaps in these areas where the science is rapidly evolving to better ensure the safety and efficacy of new therapeutic agents.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, and Evaluation of a Novel 4-Aminomethyl-4-fluoropiperidine as a T-Type Ca2+ Channel Antagonist

William D. Shipe; James C. Barrow; Zhi Qiang Yang; Craig W. Lindsley; F. Vivien Yang; Kelly Ann S. Schlegel; Youheng Shu; Kenneth E. Rittle; Mark G. Bock; George D. Hartman; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Emily D. Adarayan; Thomayant Prueksaritanont; Matthew M. Zrada; Victor N. Uebele; Cindy E. Nuss; Thomas M. Connolly; Scott M. Doran; Steven V. Fox; Richard L. Kraus; Michael J. Marino; Valerie Kuzmick Graufelds; Hugo M. Vargas; Patricia B. Bunting; Martha Hasbun-Manning; Rose M. Evans; Kenneth S. Koblan; John J. Renger

The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.


Journal of Medicinal Chemistry | 2008

Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels

Zhi-Qiang Yang; James C. Barrow; William D. Shipe; Kelly-Ann S. Schlegel; Youheng Shu; F. Vivien Yang; Craig W. Lindsley; Kenneth E. Rittle; Mark G. Bock; George D. Hartman; Victor N. Uebele; Cindy E. Nuss; Steve V. Fox; Richard L. Kraus; Scott M. Doran; Thomas M. Connolly; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Emily D. Adarayan; Thomayant Prueksaritanont; Matthew M. Zrada; Michael J. Marino; Valerie Kuzmick Graufelds; Anthony G. DiLella; Ian J. Reynolds; Hugo M. Vargas; Patricia B. Bunting; Richard Woltmann; Michael Magee

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinsons disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.


Journal of Clinical Investigation | 2009

Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice

Victor N. Uebele; Anthony L. Gotter; Cindy E. Nuss; Richard L. Kraus; Scott M. Doran; Susan L. Garson; Duane R. Reiss; Yuxing Li; James C. Barrow; Thomas S. Reger; Zhi Qiang Yang; Jeanine Ballard; Cuyue Tang; Joseph M. Metzger; Sheng Ping Wang; Kenneth S. Koblan; John J. Renger

The epidemics of obesity and metabolic disorders have well-recognized health and economic burdens. Pharmacologic treatments for these diseases remain unsatisfactory with respect to both efficacy and side-effect profiles. Here, we have identified a potential central role for T-type calcium channels in regulating body weight maintenance and sleep. Previously, it was shown that mice lacking CaV3.1 T-type calcium channels have altered sleep/wake activity. We found that these mice were also resistant to high-fat diet-induced weight gain, without changes in food intake or sensitivity to high-fat diet-induced disruptions of diurnal rhythm. Administration of a potent and selective antagonist of T-type calcium channels, TTA-A2, to normal-weight animals prior to the inactive phase acutely increased sleep, decreased body core temperature, and prevented high-fat diet-induced weight gain. Administration of TTA-A2 to obese rodents reduced body weight and fat mass while concurrently increasing lean muscle mass. These effects likely result from better alignment of diurnal feeding patterns with daily changes in circadian physiology and potentially an increased metabolic rate during the active phase. Together, these studies reveal what we believe to be a previously unknown role for T-type calcium channels in the regulation of sleep and weight maintenance and suggest the potential for a novel therapeutic approach to treating obesity.


Cell Biochemistry and Biophysics | 2009

Positive allosteric interaction of structurally diverse T-type calcium channel antagonists.

Victor N. Uebele; Cindy E. Nuss; Steven V. Fox; Susan L. Garson; Razvan Cristescu; Scott M. Doran; Richard L. Kraus; Vincent P. Santarelli; Yuxing Li; Æ James C. Barrow; Zhi-Qiang Yang; Kelly-Ann S. Schlegel; Kenneth E. Rittle; Thomas S. Reger; Rodney A. Bednar; Wei Lemaire; Faith A. Mullen; Jeanine Ballard; Cuyue Tang; Ge Dai; Owen B. McManus; Kenneth S. Koblan; John J. Renger

Low-voltage-activated (T-type) calcium channels play a role in diverse physiological responses including neuronal burst firing, hormone secretion, and cell growth. To better understand the biological role and therapeutic potential of the target, a number of structurally diverse antagonists have been identified. Multiple drug interaction sites have been identified for L-type calcium channels, suggesting a similar possibility exists for the structurally related T-type channels. Here, we radiolabel a novel amide T-type calcium channel antagonist (TTA-A1) and show that several known antagonists, including mibefradil, flunarizine, and pimozide, displace binding in a concentration-dependent manner. Further, we identify a novel quinazolinone T-type antagonist (TTA-Q4) that enhanced amide radioligand binding, increased affinity in a saturable manner and slowed dissociation. Functional evaluation showed these compounds to be state-dependent antagonists which show a positive allosteric interaction. Consistent with slowing dissociation, the duration of efficacy was prolonged when compounds were co-administered to WAG/Rij rats, a genetic model of absence epilepsy. The development of a T-type calcium channel radioligand has been used to demonstrate structurally distinct TTAs interact at allosteric sites and to confirm the potential for synergistic inhibition of T-type calcium channels with structurally diverse antagonists.


Bioorganic & Medicinal Chemistry Letters | 2011

Pyridyl amides as potent inhibitors of T-type calcium channels

Thomas S. Reger; Zhi Qiang Yang; Kelly Ann S Schlegel; Youheng Shu; Christa Mattern; Rowena V. Cube; Kenneth E. Rittle; Georgia B. McGaughey; George D. Hartman; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Thomayant Prueksaritanont; Cindy E. Nuss; Scott M. Doran; Steven V. Fox; Susan L. Garson; Yuxing Li; Richard L. Kraus; Victor N. Uebele; John J. Renger; James C. Barrow

A novel series of amide T-type calcium channel antagonists were prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 led to identification of the potent and selective T-type antagonist 37 that displayed in vivo efficacy in rodent models of epilepsy and sleep.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery and expanded SAR of 4,4-disubstituted quinazolin-2-ones as potent T-type calcium channel antagonists.

Kelly Ann S. Schlegel; Zhi Qiang Yang; Thomas S. Reger; Youheng Shu; Rowena V. Cube; Kenneth E. Rittle; Phung Le Bondiskey; Mark G. Bock; George D. Hartman; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Thomayant Prueksaritanont; Cindy E. Nuss; Scott M. Doran; Steven V. Fox; Susan L. Garson; Richard L. Kraus; Yuxing Li; Victor N. Uebele; John J. Renger; James C. Barrow

The discovery and synthesis of 4,4-disubstituted quinazolinones as T-type calcium channel antagonists is reported. Based on lead compounds 2 and 3, a focused SAR campaign driven by the optimization of potency, metabolic stability, and pharmacokinetic profile identified 45 as a potent T-type Ca(2+) channel antagonist with minimized PXR activation. In vivo, 45 suppressed seizure frequency in a rat model of absence epilepsy and showed significant alterations of sleep architecture after oral dosing to rats as measured by EEG.


ACS Medicinal Chemistry Letters | 2010

Discovery of 4,4-Disubstituted Quinazolin-2-ones as T-Type Calcium Channel Antagonists

James C. Barrow; Kenneth E. Rittle; Thomas S. Reger; Zhi Qiang Yang; Phung Le Bondiskey; Georgia B. McGaughey; Mark G. Bock; George D. Hartman; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Thomayant Prueksaritanont; Cindy E. Nuss; Scott M. Doran; Steven V. Fox; Susan L. Garson; Richard L. Kraus; Yuxing Li; Michael J. Marino; Valerie Kuzmick Graufelds; Victor N. Uebele; John J. Renger

A novel series of quinazolinone T-type calcium channel antagonists have been prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 by modifications of the 3- and 4-positions of the quinazolinone ring afforded potent and selective antagonists that displayed in vivo central nervous system efficacy in epilepsy and tremor models, as well as significant effects on rat active wake as measured by electrocorticogram.


Journal of Medicinal Chemistry | 2016

Identification and in Vivo Evaluation of Liver X Receptor β-Selective Agonists for the Potential Treatment of Alzheimer’s Disease

Shawn J. Stachel; Celina Zerbinatti; Michael T. Rudd; Mali Cosden; Sokreine Suon; Kausik K. Nanda; Keith Wessner; Jillian DiMuzio; Jill Maxwell; Zhenhua Wu; Jason M. Uslaner; Maria S. Michener; Peter Szczerba; Edward J. Brnardic; Vanessa Rada; Yuntae Kim; Robert S. Meissner; Peter Wuelfing; Yang Yuan; Jeanine Ballard; Marie A. Holahan; Daniel Klein; Jun Lu; Xavier Fradera; Gopal Parthasarathy; Victor N. Uebele; Zhongguo Chen; Yingjie Li; Jian Li; Andrew John Cooke

Herein, we describe the development of a functionally selective liver X receptor β (LXRβ) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-β peptides were increased concomitantly with an improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.


ACS Medicinal Chemistry Letters | 2010

Short-Acting T-Type Calcium Channel Antagonists Significantly Modify Sleep Architecture in Rodents

Zhi Qiang Yang; Kelly Ann S. Schlegel; Youheng Shu; Thomas S. Reger; Rowena V. Cube; Christa Mattern; Paul J. Coleman; Jim Small; George D. Hartman; Jeanine Ballard; Cuyue Tang; Yuhsin Kuo; Thomayant Prueksaritanont; Cindy E. Nuss; Scott M. Doran; Steve V. Fox; Susan L. Garson; Yuxing Li; Richard L. Kraus; Victor N. Uebele; Adekemi Taylor; Wei Zeng; Wei Fang; Cynthia Chavez-Eng; Matthew D. Troyer; Julie Ann Luk; Tine Laethem; William O. Cook; John J. Renger; James C. Barrow

A novel phenyl acetamide series of short-acting T-type calcium channel antagonists has been identified and evaluated using in vitro and in vivo assays. Heterocycle substitutions of the 4-position of the phenyl acetamides afforded potent and selective antagonists that exhibited desired short plasma half-lives across preclinical species. Lead compound TTA-A8 emerged as a compound with excellent in vivo efficacy as indicated by its significant modulation of rat sleep architecture in an EEG telemetry model, favorable pharmacokinetic properties, and excellent preclinical safety. TTA-A8 recently progressed into human clinical trials, and in line with our predictions, preliminary studies (n = 12) with a 20 mg oral dose afforded a high C max of 1.82 ± 0.274 μM with an apparent terminal half-life of 3.0 ± 1.1 h.

Collaboration


Dive into the Jeanine Ballard's collaboration.

Researchain Logo
Decentralizing Knowledge