Jeanine S. Geelhoed
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeanine S. Geelhoed.
Science | 2014
Beate Kraft; Halina E. Tegetmeyer; Ritin Sharma; Martin G. Klotz; Timothy G. Ferdelman; Robert L. Hettich; Jeanine S. Geelhoed; Marc Strous
How microbes compete for nitrate Much of the ammonia fertilizer we use ends up in surface or coastal waters as nitrate. This runoff lowers water quality and damages ecosystems. Although microbial nitrogen respiration influences the fate of nitrate, it is unclear which environmental factors exert the most control. Kraft et al. performed multiple long-term incubation studies of microbial communities from marine sediments. The relative supply of nitrate and nitrite, as well as total carbon and nitrogen, provided selective pressures that drove communities toward denitrification or ammonification. The average generation time of the community also strongly influenced which respiration pathway dominated. Science, this issue p. 676 Denitrification and ammonification compete for nitrate based on environmental pressures. In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. We combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.
Environmental Science & Technology | 2011
Jeanine S. Geelhoed; Alfons J. M. Stams
Geobacter sulfurreducens is a well-known current-producing microorganism in microbial fuel cells, and is able to use acetate and hydrogen as electron donor. We studied the functionality of G. sulfurreducens as biocatalyst for hydrogen formation at the cathode of a microbial electrolysis cell (MEC). Geobacter sulfurreducens was grown in the bioelectrode compartment of a MFC with acetate as the substrate and reduction of complexed Fe(III) at the counter electrode. After depletion of the acetate the electrode potential of the bioelectrode was decreased stepwise to -1.0 V vs Ag/AgCl reference. Production of negative current was observed, which increased in time, indicating that the bioelectrode was now acting as biocathode. Headspace analyses carried out at electrode potentials ranging from -0.8 to -1.0 V showed that hydrogen was produced, with higher rates at more negative cathode potentials. Subsequently, the metabolic properties of G. sulfurreducens for acetate oxidation at the anode and hydrogen production at the cathode were combined in one-compartment membraneless MECs operated at applied voltages of 0.8 and 0.65 V. After two days, current densities were 0.44 A m(-2) at 0.8 V applied voltage and 0.22 A m(-2) at 0.65 V, using flat-surface carbon electrodes for both anode and cathode. The cathodic hydrogen recovery ranged from 23% at 0.5 V applied voltage to 43% at 0.9 V.
Current Opinion in Microbiology | 2010
Jeanine S. Geelhoed; Hubertus V.M. Hamelers; Alfons J. M. Stams
Anaerobic bacteria have the ability to produce electricity from the oxidation of organic substrates. They also may use electricity to support chemical reactions that are energetically unfavorable. In the fermentation of sugars, hydrogen can be formed as one of the main products. However, a yield of only four hydrogen per molecule of glucose can be achieved. Potentially, eight additional hydrogen molecules could be produced when the other main fermentation product acetate is converted further, which however is energetically not possible. By the input of electricity, acetate can be oxidized further to form hydrogen. This paper reviews the scarce knowledge of how electricity can be used to produce hydrogen in the microbial oxidation of acetate or other substrates. The technological design concepts and their performance are presented, and the biochemical mechanisms of electron transfer are discussed.
Applied and Environmental Microbiology | 2011
Urania Michaelidou; Annemiek ter Heijne; Gerrit J.W. Euverink; Hubertus V.M. Hamelers; Alfons J. M. Stams; Jeanine S. Geelhoed
ABSTRACT Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended with Geobacter sulfurreducens strain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant bacterial communities. Biofilm formation on the uncoated electrodes was poor and insufficient for further analyses. Bioanode samples from the Pt- and Ta-coated Ti electrodes incubated with Fe(III) and acetate showed several Fe(III)-reducing bacteria, of which selected species were dominant, on the surface of the electrodes. In contrast, nitrate-enriched samples showed less diversity, and the enriched strains were not dominant on the electrode surface. Isolated Fe(III)-reducing strains were phylogenetically related, but not all identical, to Geobacter sulfurreducens strain PCA. Other bacterial species were also detected in the system, such as a Propionicimonas-related species that was dominant in the anodic liquid and Pseudomonas-, Clostridium-, Desulfovibrio-, Azospira-, and Aeromonas-related species.
Biotechnology and Bioengineering | 2009
J.W. van Groenestijn; Jeanine S. Geelhoed; H.P. Goorissen; K.P.M. Meesters; Alfons J. M. Stams; P.A.M. Claassen
Non‐axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73°C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by‐products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono‐ and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out‐competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non‐sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics. Biotechnol. Bioeng. 2009;102: 1361–1367.
Enzyme and Microbial Technology | 2014
Elsemiek Croese; Adriaan W. Jeremiasse; Ian P.G. Marshall; Alfred M. Spormann; Gert-Jan Euverink; Jeanine S. Geelhoed; Alfons J. M. Stams; Caroline M. Plugge
The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (large versus small) including electrode material and flow path and in carbon source provided at the cathode (bicarbonate or acetate). A hydrogenase gene-based DNA microarray (Hydrogenase Chip) was used to analyze hydrogenase genes present in the three large setups. The small setups showed dominant groups of Firmicutes and two of the large setups showed dominant groups of Proteobacteria and Bacteroidetes. The third large setup received acetate but no sulfate (no sulfur source). In this setup an almost pure culture of a Promicromonospora sp. developed. Most of the hydrogenase genes detected were coding for bidirectional Hox-type hydrogenases, which have shown to be involved in cytoplasmatic H2 production.
Environmental Microbiology | 2010
Jeanine S. Geelhoed; Robbert Kleerebezem; Dimitry Y. Sorokin; Alfons J. M. Stams; Mark C.M. van Loosdrecht
Magnetotactic bacteria are present at the oxic-anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non-magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h(-1) for strain J10 and 0.07 h(-1) for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C-source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C-source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur-oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.
FEMS Microbiology Ecology | 2009
Jeanine S. Geelhoed; Dimitry Y. Sorokin; Eric Epping; Tatjana P. Tourova; Horia Leonard Banciu; Gerard Muyzer; Alfons J. M. Stams; Mark C.M. van Loosdrecht
The oxic-anoxic transition zone (OATZ) of freshwater sediments, where opposing gradients exist of reduced iron and sulfide with oxygen, creates a suitable environment for microorganisms that derive energy from the oxidation of iron or sulfide. Gradient microcosms incubated with freshwater sediment showed rapid microbial turnover of sulfide and oxygen compared with sterile systems. Microcosms with FeS as a substrate also showed growth at the OATZ and subsequent dilution series resulted in the isolation of three novel strains, of which strain J10 grows chemolithoautotrophically with reduced sulfur compounds under microaerobic conditions. All three strains are motile spirilla with bipolar flagella, related to the genera Magnetospirillum and Dechlorospirillum within the Alphaproteobacteria. Strain J10 is closely related to Magnetospirillum gryphiswaldense and is the first strain in this genus found to be capable of autotrophic growth. Thiosulfate was oxidized completely to sulfate, with a yield of 4 g protein mol(-1) thiosulfate, and autotrophic growth was evidenced by incorporation of (13)C derived from bicarbonate into biomass. A putative gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase type II was identified in strain J10, suggesting that the Calvin-Benson-Bassham cycle is used for autotrophic growth. Analogous genes are also present in other magnetospirilla, and in the autotrophically growing alphaproteobacterium magnetic vibrio MV-1.
The ISME Journal | 2017
Jianwei Chen; Anna Hanke; Halina E. Tegetmeyer; Ines Kattelmann; Ritin Sharma; Emmo Hamann; Theresa Hargesheimer; Beate Kraft; Sabine Lenk; Jeanine S. Geelhoed; Robert L. Hettich; Marc Strous
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
Environmental Microbiology | 2014
Beate Kraft; Halina E. Tegetmeyer; Dimitri V. Meier; Jeanine S. Geelhoed; Marc Strous
Marine denitrification constitutes an important part of the global nitrogen cycle and the diversity, abundance and process rates of denitrifying microorganisms have been the focus of many studies. Still, there is little insight in the ecophysiology of marine denitrifying communities. In this study, a heterotrophic denitrifying community from sediments of a marine intertidal flat active in nitrogen cycling was selected in a chemostat and monitored over a period of 50 days. The chemostat enabled the maintenance of constant and well-defined experimental conditions over the time-course of the experiment. Analysis of the microbial community composition by automated ribosomal intergenic spacer analysis (ARISA), Illumina sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) revealed strong dynamics in community composition over time, while overall denitrification by the enrichment culture was stable. Members of the genera Arcobacter, Pseudomonas, Pseudovibrio, Rhodobacterales and of the phylum Bacteroidetes were identified as the dominant denitrifiers. Among the fermenting organisms co-enriched with the denitrifiers was a novel archaeon affiliated with the recently proposed DPANN-superphylum. The pan-genome of populations affiliated to Pseudovibrio encoded a NirK as well as a NirS nitrite reductase, indicating the rare co-occurrence of both evolutionary unrelated nitrite reductases within coexisting subpopulations.