Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne B. Lawrence is active.

Publication


Featured researches published by Jeanne B. Lawrence.


Molecular Cell | 2009

An Architectural role for a nuclear noncoding RNA : NEAT1 RNA is essential for the structure of paraspeckles

Christine Moulton Clemson; John N. Hutchinson; Sergio A. Sara; Alexander W. Ensminger; Archa H. Fox; Andrew Chess; Jeanne B. Lawrence

NEAT1 RNA, a highly abundant 4 kb ncRNA, is retained in nuclei in approximately 10 to 20 large foci that we show are completely coincident with paraspeckles, nuclear domains implicated in mRNA nuclear retention. Depletion of NEAT1 RNA via RNAi eradicates paraspeckles, suggesting that it controls sequestration of the paraspeckle proteins PSP1 and p54, factors linked to A-I editing. Unlike overexpression of PSP1, NEAT1 overexpression increases paraspeckle number, and paraspeckles emanate exclusively from the NEAT1 transcription site. The PSP-1 RNA binding domain is required for its colocalization with NEAT1 RNA in paraspeckles, and biochemical analyses support that NEAT1 RNA binds with paraspeckle proteins. Unlike other nuclear-retained RNAs, NEAT1 RNA is not A-I edited, consistent with a structural role in paraspeckles. Collectively, results demonstrate that NEAT1 functions as an essential structural determinant of paraspeckles, providing a precedent for a ncRNA as the foundation of a nuclear domain.


Cell | 1986

Intracellular localization of messenger RNAs for cytoskeletal proteins

Jeanne B. Lawrence; Robert H. Singer

We have analyzed intracellular distributions of mRNAs for the cytoskeletal proteins actin, vimentin, and tubulin by in situ hybridization. Although polyadenylated RNA was homogeneously distributed throughout the cell, actin mRNA demonstrated a nonhomogeneous distribution in 95% of randomly selected chicken embryonic myoblasts and fibroblasts, as detected by isotopic and nonisotopic techniques. Actin mRNA concentrations were highest at cell extremities, generally in lamellipodia, where grain densities were up to 16-fold higher than in areas near the nucleus. Vimentin mRNA, unlike actin mRNA, was distributed near the nucleus. Tubulin mRNA appeared most concentrated in the peripheral cytoplasm. These results demonstrate that cytoplasmic mRNAs are localized in specific, nonrandom cellular patterns and that localized concentrations of specific proteins may result from corresponding localization of their respective mRNAs. Hence, actin mRNA distribution may result in increased concentration of actin filaments in lamellipodia of motile cells.


Cell | 1988

Sensitive, high-resolution chromatin and chromosome mapping in situ: Presence and orientation of two closely integrated copies of EBV in a lymphoma line

Jeanne B. Lawrence; Carol A. Villnave; Robert H. Singer

Here we describe development and application of highly sensitive fluorescence methodology for localization of single-copy sequences in interphase nuclei and metaphase chromosomes by nonisotopic in situ hybridization. Application of this methodology to the investigation of Epstein-Barr virus integration in the Namalwa lymphoma cell line has revealed two EBV genomes closely integrated at the known site on chromosome 1. Detecting sequences as small as 5 kb, we further demonstrate resolution within interphase nuclei of two fragments of the viral genome spaced only 130 kb apart. Results indicate that the viral genomes are in opposite orientations and separated by roughly 340 kb of cellular DNA. This work demonstrates the feasibility and resolving power of interphase chromatin mapping to assess the proximity of closely spaced DNA sequences. Implications for virology, gene mapping, and investigation of nuclear organization are discussed.


BMC Genomics | 2007

A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains

John N. Hutchinson; Alexander W. Ensminger; Christine Moulton Clemson; Christopher R. Lynch; Jeanne B. Lawrence; Andrew Chess

BackgroundNoncoding RNA species play a diverse set of roles in the eukaryotic cell. While much recent attention has focused on smaller RNA species, larger noncoding transcripts are also thought to be highly abundant in mammalian cells. To search for large noncoding RNAs that might control gene expression or mRNA metabolism, we used Affymetrix expression arrays to identify polyadenylated RNA transcripts displaying nuclear enrichment.ResultsThis screen identified no more than three transcripts; XIST, and two unique noncoding nuclear enriched abundant transcripts (NEAT) RNAs strikingly located less than 70 kb apart on human chromosome 11: NEAT1, a noncoding RNA from the locus encoding for TncRNA, and NEAT2 (also known as MALAT-1). While the two NEAT transcripts share no significant homology with each other, each is conserved within the mammalian lineage, suggesting significant function for these noncoding RNAs. NEAT2 is extraordinarily well conserved for a noncoding RNA, more so than even XIST. Bioinformatic analyses of publicly available mouse transcriptome data support our findings from human cells as they confirm that the murine homologs of these noncoding RNAs are also nuclear enriched. RNA FISH analyses suggest that these noncoding RNAs function in mRNA metabolism as they demonstrate an intimate association of these RNA species with SC35 nuclear speckles in both human and mouse cells. These studies show that one of these transcripts, NEAT1 localizes to the periphery of such domains, whereas the neighboring transcript, NEAT2, is part of the long-sought polyadenylated component of nuclear speckles.ConclusionOur genome-wide screens in two mammalian species reveal no more than three abundant large non-coding polyadenylated RNAs in the nucleus; the canonical large noncoding RNA XIST and NEAT1 and NEAT2. The function of these noncoding RNAs in mRNA metabolism is suggested by their high levels of conservation and their intimate association with SC35 splicing domains in multiple mammalian species.


Cell | 1991

Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein

Mark E. Ewen; Yigong Xing; Jeanne B. Lawrence; David M. Livingston

p107 is a cellular protein that forms specific complexes with adenovirus E1A and SV40 large T antigen (T). The genetics of the p107-T/E1A interaction as well as other features of this protein suggests that p107 shares functional properties with the tumor suppressor product, RB. A partial cDNA for human p107 has been cloned. Its sequences map to 20q11.2 and encode a 936 residue protein. Comparison analysis of the p107 protein sequence reveals a major region of RB homology extending over 564 residues. This region in RB is essential to its growth-controlling function. Sequences outside of these two regions are largely unique to each protein. The p107 and RB homology regions can independently bind to T and E1A. Thus, these two proteins display similarities of structure that may, at least in part, explain their known functional similarities and suggest a generic function for p107 in cell cycle regulation.


Science | 2013

A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes

Susan Carpenter; Daniel Aiello; Maninjay K. Atianand; Emiliano P. Ricci; Pallavi Gandhi; Lisa L. Hall; Meg Byron; Brian G. Monks; Meabh Henry-Bezy; Jeanne B. Lawrence; Luke A. J. O'Neill; Melissa J. Moore; Daniel R. Caffrey; Katherine A. Fitzgerald

A New Linc in Innate Immunity Long noncoding RNAs (lncRNAs) have recently emerged as important regulators of gene expression in a wide variety of biological processes, although specific roles for these molecules in the immune system have not been described. Carpenter et al. (p. 789, published online 1 August) now define the function of one such lncRNA in the immune system, lincRNA-Cox2. Whole-transcriptome profiling revealed that lincRNA-Cox2 was induced in mouse macrophages in response to activation of Toll-like receptors—molecules that detect microbes and alert the immune system to respond. LincRNA-Cox2 both positively and negatively regulated the expression of distinct groups of inflammatory genes. Negative regulation of gene expression was mediated by lincRNA-Cox interaction with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. In mice, a broadly acting RNA, lincRNA-Cox2, regulates the circuit that controls the inflammatory response. An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.


Cell | 1990

Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X inactivation and possible implications for turner syndrome

Elizabeth M. C. Fisher; Peggy Beer-Romero; Laura G. Brown; Anne J. Ridley; John Mcneil; Jeanne B. Lawrence; Huntington F. Willard; Frederick R. Bieber; David C. Page

We have isolated two genes on the human sex chromosomes, one on the Y and one on the X, that appear to encode isoforms of ribosomal protein S4. These predicted RPS4Y and RPS4X proteins differ at 19 of 263 amino acids. Both genes are widely transcribed in human tissues, suggesting that the ribosomes of human males and females are structurally distinct. Transcription analysis revealed that, unlike most genes on the X chromosome, RPS4X is not dosage compensated. RPS4X maps to the long arm of the X chromosome (Xq), where no other genes are known to escape X inactivation. Curiously, RPS4X maps near the site from which the X-inactivating signal is thought to emanate. On the Y chromosome, RPS4Y maps to a 90 kb segment that has been implicated in Turner syndrome. We consider the possible role of RPS4 haploinsufficiency in the etiology of the Turner phenotype.


Nature Structural & Molecular Biology | 2011

The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules

Davide Baù; Amartya Sanyal; Bryan R. Lajoie; Emidio Capriotti; Meg Byron; Jeanne B. Lawrence; Job Dekker; Marc A. Marti-Renom

We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences

Christine Moulton Clemson; Lisa L. Hall; Meg Byron; John Mcneil; Jeanne B. Lawrence

We investigated whether genes escape X chromosome inactivation by positioning outside of the territory defined by XIST RNA. Results reveal an unanticipated higher order organization of genes and noncoding sequences. All 15 X-linked genes, regardless of activity, position on the border of the XIST RNA territory, which resides outside of the DAPI-dense Barr body. Although more strictly delineated on the inactive X chromosome (Xi), all genes localized predominantly to the outer rim of the Xi and active X chromosome. This outer rim is decorated only by X chromosome DNA paints and is excluded from both the XIST RNA and dense DAPI staining. The only DNA found well within the Barr body and XIST RNA territory was centromeric and Cot-1 DNA; hence, the core of the X chromosome essentially excludes genes and is composed primarily of noncoding repeat-rich DNA. Moreover, we show that this core of repetitive sequences is expressed throughout the nucleus yet is silenced throughout Xi, providing direct evidence for chromosome-wide regulation of “junk” DNA transcription. Collective results suggest that the Barr body, long presumed to be the physical manifestation of silenced genes, is in fact composed of a core of silenced noncoding DNA. Instead of acting at a local gene level, XIST RNA appears to interact with and silence core architectural elements to effectively condense and shut down the Xi.


Nature | 2013

Translating dosage compensation to trisomy 21

Jun Jiang; Yuanchun Jing; Gregory J. Cost; Jen-Chieh Chiang; Heather J. Kolpa; Allison M. Cotton; Dawn M. Carone; Benjamin R. Carone; David A. Shivak; Dmitry Guschin; Jocelynn R. Pearl; Edward J. Rebar; Meg Byron; Philip D. Gregory; Carolyn J. Brown; Fyodor D. Urnov; Lisa L. Hall; Jeanne B. Lawrence

Down’s syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down’s syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a ‘chromosome 21 Barr body’. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of ‘chromosome therapy’.

Collaboration


Dive into the Jeanne B. Lawrence's collaboration.

Top Co-Authors

Avatar

Lisa L. Hall

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Meg Byron

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Robert H. Singer

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John Mcneil

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Kelly P. Smith

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Christine Moulton Clemson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lindsay S. Shopland

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Gary S. Stein

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Janet L. Stein

University of Concepción

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Carter

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge