Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne H. Schickli is active.

Publication


Featured researches published by Jeanne H. Schickli.


Journal of Virology | 2003

Effects of Human Metapneumovirus and Respiratory Syncytial Virus Antigen Insertion in Two 3′ Proximal Genome Positions of Bovine/Human Parainfluenza Virus Type 3 on Virus Replication and Immunogenicity

Roderick Tang; Jeanne H. Schickli; Mia MacPhail; Fiona Fernandes; Leenas Bicha; Joshua Spaete; Ron A. M. Fouchier; Albert D. M. E. Osterhaus; Richard R. Spaete; Aurelia Haller

ABSTRACT A live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory syncytial virus (RSV). RSV and hMPV are both paramyxoviruses that cause respiratory disease in young children, the elderly, and immunocompromised individuals. RSV has been known for decades to cause acute lower respiratory tract infections in young children, which often result in hospitalization, while hMPV has only been recently identified as a novel human respiratory pathogen. In this study, the ability of bovine/human PIV3 to express three different foreign transmembrane surface glycoproteins and to induce a protective immune response was evaluated. The RNA-dependent RNA polymerase of paramyxoviruses binds to a single site at the 3′ end of the viral RNA genome to initiate transcription of viral genes. The genome position of the viral gene determines its level of gene expression. The promoter-proximal gene is transcribed with the highest frequency, and each downstream gene is transcribed less often due to attenuation of transcription at each gene junction. This feature of paramyxoviruses was exploited using the PIV3 vector by inserting the foreign viral genes at the 3′ terminus, at position 1 or 2, of the viral RNA genome. These locations were expected to yield high levels of foreign viral protein expression stimulating a protective immune response. The immunogenicity and protection results obtained with a hamster model showed that bovine/human PIV3 can be employed to generate bivalent PIV3/RSV or PIV3/hMPV vaccine candidates that will be further evaluated for safety and efficacy in primates.


Vaccine | 2005

A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys.

Roderick Tang; Kutubuddin Mahmood; Mia MacPhail; Jeanne M. Guzzetta; Aurelia Haller; Hui Liu; Heather Lawlor; Elizabeth Stillman; Jeanne H. Schickli; Ron A. M. Fouchier; Albert D. M. E. Osterhaus; Richard R. Spaete

Abstract Human metapneumovirus (hMPV) infection causes respiratory tract disease similar to that observed during human respiratory syncytial virus infection (hRSV). hMPV infections have been reported across the entire age spectrum although the most severe disease occurs in young children. No vaccines, chemotherapeutics or antibodies are presently available for preventing or treating hMPV infections. In this study, a bovine/human chimeric parainfluenza virus type 3 (b/h PIV3) expressing the human parainfluenza type 3 (hPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) proteins was engineered to express hMPV fusion (F) protein from the second genome position (b/h PIV3/hMPV F2) with the goal of generating a novel hMPV vaccine. b/h PIV3/hMPV F2 was previously shown to protect hamsters from challenge with wt hMPV (Tang RS, Schickli JH, Macphail M, Fernandes F, Bicha L, Spaete J, et al. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3’ proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity. J Virol 2003;77:10819–28) and is here further evaluated for efficacy and immunogenicity in African green monkeys (AGMs). AGMs immunized intranasally and intratracheally with b/h PIV3/hMPV F2 generated hMPV- and hPIV3-specific humoral and cellular immune responses and were protected from wt hMPV infection. In a separate study, the host-range restriction of b/h PIV3/hMPV F2 replication relative to wt hPIV3 was performed in rhesus monkeys to demonstrate attenuation. These studies showed that b/h PIV3/hMPV F2 was immunogenic, protective and attenuated in non-human primates and warrants further evaluation in humans as a vaccine candidate for prevention of hMPV-associated respiratory tract diseases.


Vaccine | 2013

Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine.

Chin-Fen Yang; C. Kathy Wang; Elissa Malkin; Jeanne H. Schickli; Cindy Shambaugh; Fengrong Zuo; Mark S. Galinski; Filip Dubovsky; Roderick Tang

MEDI-534 is the first live vectored RSV vaccine candidate to be evaluated in seronegative children. It consists of the bovine parainfluenza virus type 3 (PIV3) genome with substituted human PIV3 F and HN glycoproteins engineered to express RSV F protein. A Phase 1 study of 49 healthy RSV and PIV3 seronegative children 6 to <24 months of age demonstrated an acceptable safety profile at the following doses: 10(4), 10(5) and 10(6)TCID50. After 3 doses of MEDI-534 at 10(6)TCID50, administered at 0, 2 and 4 month intervals, 100% of subjects seroresponded to PIV3, whereas only 50% seroresponded to RSV. To investigate the discordance in seroresponse rates, the RSV F transgene and its flanking non-coding nucleotides were sequenced from shed virus recovered from the nasal washes of 24 MEDI-534-vaccinated children. Eleven out of 24 samples contained no nucleotide changes in the analyzed region. The other 13 samples contained mixtures of variant subpopulations. Fifty-five percent exhibited changes in the transcription termination poly A gene sequences of the upstream bPIV3N gene while 21% had variant subpopulations in the RSV F open reading frame that resulted in pre-mature stop codons. Both types of changes are expected to reduce RSV F expression. Evaluation of the administered vaccine by dual immunofluorescence staining showed ~2.5% variants with low or no RSV F expression while single nucleotide primer extension detected ~1% variation at nucleotide 2045 that resulted in a pre-mature translational termination at codon 85. An association between shedding of variants and lower RSV F serological response was observed but it was not possible to establish a definitive clinical significance due to the small number of subjects in this study.


Virology Journal | 2008

Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters

Jeanne H. Schickli; Mia MacPhail; Jeanne M. Guzzetta; Richard R. Spaete; Roderick Tang

BackgroundHuman metapneumovirus (hMPV) infection can cause acute lower respiratory tract illness in infants, the immunocompromised, and the elderly. Currently there are no licensed preventative measures for hMPV infections. Using a variant of hMPV/NL/1/00 that does not require trypsin supplementation for growth in tissue culture, we deleted the M2-2 gene and evaluated the replication of rhMPV/ΔM2-2 virus in vitro and in vivo.ResultsIn vitro studies showed that the ablation of M2-2 increased the propensity for insertion of U nucleotides in poly-U tracts of the genomic RNA. In addition, viral transcription was up-regulated although the level of genomic RNA remained comparable to rhMPV. Thus, deletion of M2-2 alters the ratio between hMPV genome copies and transcripts. In vivo, rhMPV/ΔM2-2 was attenuated compared to rhMPV in the lungs and nasal turbinates of hamsters. Hamsters immunized with one dose of rhMPV/ΔM2-2 were protected from challenge with 106 PFU of wild type (wt) hMPV/NL/1/00.ConclusionOur results suggest that hMPV M2-2 alters regulation of transcription and influences the fidelity of the polymerase complex during viral genome replication. In the hamster model, rhMPVΔM2-2 is attenuated and protective suggesting that deletion of M2-2 may result in a potential live vaccine candidate. A more thorough knowledge of the hMPV polymerase complex and the role of M2-2 during hMPV replication are being studied as we develop a potential live hMPV vaccine candidate that lacks M2-2 expression.


Virus Research | 2012

Nonclinical phenotypic and genotypic analyses of a Phase 1 pediatric respiratory syncytial virus vaccine candidate MEDI-559 (rA2cp248/404/1030ΔSH) at permissive and non-permissive temperatures.

Jeanne H. Schickli; Roderick Tang

MEDI-559 is a recombinant live attenuated intranasal RSV vaccine candidate currently being evaluated in 5 to <24 month old RSV seronegative infants for safety and immunogenicity. MEDI-559 and the previously tested rA2cp248/404/1030ΔSH both have 5 cold-passaged mutations, 3 temperature sensitive (ts) markers designated 248, 404, and 1030, and deletion of the SH gene that collectively contribute to their attenuation and temperature sensitive growth phenotypes. However, MEDI-559 differs from rA2cp248/404/1030ΔSH by 39 silent nucleotide substitutions. Nevertheless, these viruses have comparable in vitro and in vivo phenotypes. Temperature sensitivity is monitored by the efficiency of plaque formation at elevated temperatures. The efficiency of plaque formation of MEDI-559 is reduced by ≥ 100-fold at 35 ° C and by ≥ 1000 fold at 37 °C compared to 32 °C. Passaging of MEDI-559 at temperatures up to 37 °C resulted in generation of temperature sensitive intermediate (tsi) viruses. The most frequent change was a reversion to wildtype tyrosine at the 1030 ts site followed by a less frequently observed leucine to non-wildtype serine substitution at the 248 ts site. One tsi virus had changes at both the 248 and 1030 ts sites and another tsi virus that had maintained all of the 248, 404 and 1030 ts sites had two novel changes (Asp158Gly and Ser1313Cys) in the polymerase (L) gene. Asp158Gly and Ser1313Cys singly or in combination in the MEDI-559 genetic background were confirmed to result in a tsi growth phenotype. All the tsi viruses have small plaque phenotypes and are highly attenuated in the lungs of cotton rats.


Journal of Virological Methods | 2008

Optimization of plasmid-only rescue of highly attenuated and temperature-sensitive respiratory syncytial virus (RSV) vaccine candidates for human trials

Roderick Tang; Richard R. Spaete; Jeanne H. Schickli

Respiratory syncytial virus (RSV) is the most common cause of severe bronchiolitis in infants and young children in the U.S. No licensed RSV vaccines are currently available. Established techniques for recovering RSV from cDNA utilize mammalian cells, such as HEp-2 or BSR T7/5, that are not currently suitable for vaccine manufacture. When using HEp-2 cells, co-infection with an attenuated vaccinia virus that expresses T7 RNA polymerase is also required. For human clinical trials, processes that do not require the use of helper viruses and minimize the use of animal derived materials must be developed to reduce the potential theoretical risk of transmitting adventitious agents such as BSE. RSV was generated by electroporating Vero cells from a well characterized cell bank with 6 plasmids expressing T7 RNA polymerase, the full-length anti-genomic RSV and RSV N, P, M2-1 and L. The process was optimized such that highly attenuated and temperature-sensitive RSV vaccine candidates could be recovered in a system completely free of animal derived components. Efficiencies of virus recovery ranged from 30% to 100%. Human metapneumovirus was also readily recovered, suggesting that this protocol is applicable for the production of clinical trial material of other non-segmented negative sense RNA viruses.


Journal of General Virology | 2013

A single amino acid in the F2 subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity

Heather Lawlor; Jeanne H. Schickli; Roderick Tang

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children, especially in infants less than 1 year of age. There are currently no licensed vaccines against RSV. rA2ΔM2-2 is a promising live-attenuated vaccine candidate that is currently being evaluated in the clinic. Attenuation of rA2ΔM2-2 is achieved by a single deletion of the M2-2 gene, which disrupts the balance between viral transcription and replication. Whilst performing a manufacturing feasibility study in a serum-free adapted Vero cell line, differences in growth kinetics and cytopathic effect (CPE) were identified between two rA2ΔM2-2 vaccine candidates. Comparative sequence analysis identified four amino acid differences between the two vaccine viruses. Recombinant rA2ΔM2-2 viruses carrying each of the four amino acid differences identified a K66E mutation in the F2 fragment of the fusion (F) protein as the cause of the growth and CPE differences. Syncytium-formation experiments with RSV F protein carrying mutations at aa 66 suggested that a change in charge at this residue within the F2 fragment can have a significant impact on fusion.


Journal of General Virology | 2004

Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design

Mia MacPhail; Jeanne H. Schickli; Roderick Tang; Christopher Robinson; Ron A. M. Fouchier; Albert D. M. E. Osterhaus; Richard R. Spaete; Aurelia Haller


Journal of General Virology | 2003

Evaluation of attenuation, immunogenicity and efficacy of a bovine parainfluenza virus type 3 (PIV-3) vaccine and a recombinant chimeric bovine/human PIV-3 vaccine vector in rhesus monkeys

Sridhar Pennathur; Aurelia Haller; Mia MacPhail; Tom Rizzi; Sepideh Kaderi; Fiona Fernandes; Leenas Bicha; Jeanne H. Schickli; Roderick Tang; Wendy Chen; Nick Nguyen; Sharon Mathie; Hersh Mehta; Kathleen L. Coelingh


Archive | 2004

Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences and methods for propagating virus

Roderick Tang; Jeanne H. Schickli

Collaboration


Dive into the Jeanne H. Schickli's collaboration.

Researchain Logo
Decentralizing Knowledge