Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne M. Frederick is active.

Publication


Featured researches published by Jeanne M. Frederick.


The Journal of Comparative Neurology | 2003

Retinal remodeling triggered by photoreceptor degenerations

Bryan W. Jones; Carl B. Watt; Jeanne M. Frederick; Wolfgang Baehr; Ching-Kang Chen; Edward M. Levine; Ann H. Milam; Matthew M. LaVail; Robert E. Marc

Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed. J. Comp. Neurol. 464:1–16, 2003.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)

Benjamin M. Neale; Jesen Fagerness; Robyn Reynolds; Lucia Sobrin; Margaret M. Parker; Soumya Raychaudhuri; Perciliz L. Tan; Edwin C. Oh; Joanna E. Merriam; Eric H. Souied; Paul S. Bernstein; Binxing Li; Jeanne M. Frederick; Kang Zhang; Milam A. Brantley; Aaron Y. Lee; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; Stephan Ripke; R. Theodore Smith; Gaetano R. Barile; Nicholas Katsanis; Rando Allikmets; Mark J. Daly; Johanna M. Seddon

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments

Houbin Zhang; Shijun Li; Thuy Doan; Fred Rieke; Peter B. Detwiler; Jeanne M. Frederick; Wolfgang Baehr

The mouse Pde6d gene encodes a ubiquitous prenyl binding protein, termed PrBP/δ, of largely unknown physiological function. PrBP/δ was originally identified as a putative rod cGMP phosphodiesterase (PDE6) subunit in the retina, where it is relatively abundant. To investigate the consequences of Pde6d deletion in retina, we generated a Pde6d−/− mouse by targeted recombination. Although manifesting reduced body weight, the Pde6d−/− mouse was viable and fertile and its retina developed normally. Immunocytochemistry showed that farnesylated rhodopsin kinase (GRK1) and prenylated rod PDE6 catalytic subunits partially mislocalized in Pde6d−/− rods, whereas rhodopsin was unaffected. In Pde6d−/− rod single-cell recordings, sensitivity to single photons was increased and saturating flash responses were prolonged. Pde6d−/− scotopic paired-flash electroretinograms indicated a delay in recovery of the dark state, likely due to reduced levels of GRK1 in rod outer segments. In Pde6d−/− cone outer segments, GRK1 and cone PDE6α′ were present at very low levels and the photopic b-wave amplitudes were reduced by 70%. Thus the absence of PrBP/δ in retina impairs transport of prenylated proteins, particularly GRK1 and cone PDE, to rod and cone outer segments, resulting in altered photoreceptor physiology and a phenotype of a slowly progressing rod/cone dystrophy.


Journal of Biological Chemistry | 2007

The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors

Wolfgang Baehr; Sukanya Karan; Tadao Maeda; Dong Gen Luo; Sha Li; J. Darin Bronson; Carl B. Watt; King Wai Yau; Jeanne M. Frederick; Krzysztof Palczewski

Retinal guanylate cyclases 1 and 2 (GC1 and GC2) are responsible for synthesis of cyclic GMP in rods and cones, but their individual contributions to phototransduction are unknown. We report here that the deletion of both GC1 and GC2 rendered rod and cone photoreceptors nonfunctional and unstable. In the rod outer segments of GC double knock-out mice, guanylate cyclase-activating proteins 1 and 2, and cyclic GMP phosphodiesterase were undetectable, although rhodopsin and transducin α-subunit were mostly unaffected. Outer segment membranes of GC1–/– and GC double knock-out cones were destabilized and devoid of cone transducin (α- and γ-subunits), cone phosphodiesterase, and G protein-coupled receptor kinase 1, whereas cone pigments were present at reduced levels. Real time reverse transcription-PCR analyses demonstrated normal RNA transcript levels for the down-regulated proteins, indicating that down-regulation is posttranslational. We interpret these results to demonstrate an intrinsic requirement of GCs for stability and/or transport of a set of membrane-associated phototransduction proteins.


Biochemistry | 2011

Identification of StARD3 as a Lutein-binding Protein in the Macula of the Primate Retina †

Binxing Li; Preejith Vachali; Jeanne M. Frederick; Paul S. Bernstein

Lutein, zeaxanthin, and their metabolites are the xanthophyll carotenoids that form the macular pigment of the human retina. Epidemiological evidence suggests that high levels of these carotenoids in the diet, serum, and macula are associated with a decreased risk of age-related macular degeneration (AMD), and the AREDS2 study is prospectively testing this hypothesis. Understanding the biochemical mechanisms underlying the selective uptakes of lutein and zeaxanthin into the human macula may provide important insights into the physiology of the human macula in health and disease. GSTP1 is the macular zeaxanthin-binding protein, but the identity of the human macular lutein-binding protein has remained elusive. Prior identification of the silkworm lutein-binding protein (CBP) as a member of the steroidogenic acute regulatory domain (StARD) protein family and selective labeling of monkey photoreceptor inner segments with an anti-CBP antibody provided an important clue for identifying the primate retina lutein-binding protein. The homology of CBP with all 15 human StARD proteins was analyzed using database searches, Western blotting, and immunohistochemistry, and we here provide evidence to identify StARD3 (also known as MLN64) as a human retinal lutein-binding protein. Antibody to StARD3, N-62 StAR, localizes to all neurons of monkey macular retina and especially cone inner segments and axons, but does not colocalize with the Müller cell marker, glutamine synthetase. Further, recombinant StARD3 selectively binds lutein with high affinity (K(D) = 0.45 μM) when assessed by surface plasmon resonance (SPR) binding assays. Our results demonstrate previously unrecognized, specific interactions of StARD3 with lutein and provide novel avenues for exploring its roles in human macular physiology and disease.


Journal of Biological Chemistry | 2004

Photoreceptor cGMP Phosphodiesterase δ Subunit (PDEδ) Functions as a Prenyl-binding Protein

Houbin Zhang; Xiao Hui Liu; Kai Zhang; Ching-Kang Chen; Jeanne M. Frederick; Glenn D. Prestwich; Wolfgang Baehr

Bovine PDEδ was originally copurified with rod cGMP phosphodiesterase (PDE) and shown to interact with prenylated, carboxymethylated C-terminal Cys residues. Other studies showed that PDEδ can interact with several small GTPases including Rab13, Ras, Rap, and Rho6, all of which are prenylated, as well as the N-terminal portion of retinitis pigmentosa GTPase regulator and Arl2/Arl3, which are not prenylated. We show by immunocytochemistry with a PDEδ-specific antibody that PDEδ is present in rods and cones. We find by yeast two-hybrid screening with a PDEδ bait that it can interact with farnesylated rhodopsin kinase (GRK1) and that prenylation is essential for this interaction. In vitro binding assays indicate that both recombinant farnesylated GRK1 and geranylgeranylated GRK7 co-precipitate with a glutathione S-transferase-PDEδ fusion protein. Using fluorescence resonance energy transfer techniques exploiting the intrinsic tryptophan fluorescence of PDEδ and dansylated prenyl cysteines as fluorescent ligands, we show that PDEδ specifically binds geranylgeranyl and farnesyl moieties with a Kd of 19.06 and 0.70 μm, respectively. Our experiments establish that PDEδ functions as a prenyl-binding protein interacting with multiple prenylated proteins.


The EMBO Journal | 2002

GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice

Kim A. Howes; Mark E. Pennesi; Izabela Sokal; Jill Church-Kopish; Ben Schmidt; David Margolis; Jeanne M. Frederick; Fred Rieke; Krzysztof Palczewski; S. M. Wu; Peter B. Detwiler; Wolfgang Baehr

Visual transduction in retinal photoreceptors operates through a dynamic interplay of two second messengers, Ca2+ and cGMP. Ca2+ regulates the activity of guanylate cyclase (GC) and the synthesis of cGMP by acting on a GC‐activating protein (GCAP). While this action is critical for rapid termination of the light response, the GCAP responsible has not been identified. To test if GCAP1, one of two GCAPs present in mouse rods, supports the generation of normal flash responses, transgenic mice were generated that express only GCAP1 under the control of the endogenous promoter. Paired flash responses revealed a correlation between the degree of recovery of the rod a‐wave and expression levels of GCAP1. In single cell recordings, the majority of the rods generated flash responses that were indistinguishable from wild type. These results demonstrate that GCAP1 at near normal levels supports the generation of wild‐type flash responses in the absence of GCAP2.


The Journal of Neuroscience | 2008

Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal.

Houbin Zhang; Jie Fan; S. Li; Sukanya Karan; Baerbel Rohrer; Krzysztof Palczewski; Jeanne M. Frederick; Rosalie K. Crouch; Wolfgang Baehr

Lecithin retinol acyl transferase (LRAT) and retinal pigment epithelium protein 65 (RPE65) are key enzymes of the retinoid cycle. In Lrat−/− and Rpe65−/− mice, models of human Leber congenital amaurosis, the retinoid cycle is disrupted and 11-cis-retinal, the chromophore of visual pigments, is not produced. The Lrat−/− and Rpe65−/− retina phenotype presents with rapid sectorial cone degeneration, and the visual pigments, S-opsin and M/L-opsin, fail to traffic to cone outer segments appropriately. In contrast, rod opsin traffics normally in mutant rods. Concomitantly, guanylate cyclase 1, cone Tα-subunit, cone phosphodiesterase 6α′ (PDE6α′), and GRK1 (G-protein-coupled receptor kinase 1; opsin kinase) are not transported to Lrat−/− and Rpe65−/− cone outer segments. Aberrant localization of these membrane-associated proteins was evident at postnatal day 15, before the onset of ventral and central cone degeneration. Protein levels of cone Tα and cone PDE6α′ were reduced, whereas their transcript levels were unchanged, suggesting posttranslational degradation. In an Rpe65−/−Rho−/− double knock-out model, trafficking of cone pigments and membrane-associated cone phototransduction polypeptides to the outer segments proceeded normally after 11-cis-retinal administration. These results suggest that ventral and central cone opsins must be regenerated with 11-cis-retinal to permit transport to the outer segments. Furthermore, the presence of 11-cis-retinal is essential for proper transport of several membrane-associated cone phototransduction polypeptides in these cones.


Biochemistry | 2009

Purification and partial characterization of a lutein-binding protein from human retina

Prakash Bhosale; Binxing Li; Mohsen Sharifzadeh; Werner Gellermann; Jeanne M. Frederick; Kozo Tsuchida; Paul S. Bernstein

Dietary intake of lutein and zeaxanthin appears to be advantageous for protecting human retinal and macular tissues from degenerative disorders such as age-related macular degeneration. Selective concentration of just two of the many dietary carotenoids suggests that uptake and transport of these xanthophyll carotenoids into the human foveal region are mediated by specific xanthophyll-binding proteins such as GSTP1 which has previously been identified as the zeaxanthin-binding protein of the primate macula. Here, a membrane-associated human retinal lutein-binding protein (HR-LBP) was purified from human peripheral retina using ion-exchange chromatography followed by size-exclusion chromatography. After attaining 83-fold enrichment of HR-LBP, this protein exhibited a significant bathochromic shift of approximately 90 nm in association with lutein, and equilibrium binding studies demonstrated saturable, specific binding toward lutein with a K(D) of 0.45 muM. Examination for cross-reactivity with antibodies raised against known lutein-binding proteins from other organisms revealed consistent labeling of a major protein band of purified HR-LBP at approximately 29 kDa with an antibody raised against silkworm (Bombyx mori) carotenoid-binding protein (CBP), a member of steroidogenic acute regulatory (StAR) protein family with significant homology to many human StAR proteins. Immunolocalization with antibodies directed against either CBP or GSTP1 showed specific labeling of rod and cone inner segments, especially in the mitochondria-rich ellipsoid region. There was also strong labeling of the outer plexiform (Henle fiber) layer with anti-GSTP1. Such localizations compare favorably with the distribution of macular carotenoids as revealed by resonance Raman microscopy. Our results suggest that HR-LBP may facilitate luteins localization to a region of the cell subject to considerable oxidative stress.


Investigative Ophthalmology & Visual Science | 2008

Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis.

Jie Fan; Baerbel Rohrer; Jeanne M. Frederick; Wolfgang Baehr; Rosalie K. Crouch

PURPOSE The Rpe65-/- mouse, used as a model for Leber congenital amaurosis, has slow rod degeneration and rapid cone loss, presumably because of the mistrafficking of cone opsins. This animal does not generate 11-cis retinal, and both cone loss and rod response are restored by 11-cis retinal administration. Similarly, the Lrat-/- mouse does not produce 11-cis retinal. The authors sought to determine whether the same effects on rod and cone opsins in the Rpe65-/- mouse are also present in the Lrat-/- mouse, thereby establishing that these changes can be attributed to the lack of 11-cis retinal rather than to some unknown function of RPE65. METHODS Rod and cone opsins were localized by immunohistochemical methods. Functional opsin levels were determined by regeneration with 11-cis retinal. Isorhodopsin levels were determined from pigment extraction. Opsin phosphorylation was determined by mass spectrometry. RESULTS Rods in both models degenerated slowly. Regenerable rod opsin levels were similar over the 6-month time course investigated, rod opsin was phosphorylated at a low level (approximately 10%), and minimal 9-cis retinal was generated by a nonphotic process, giving a trace light response. In both models, S-opsin and M/L-opsin failed to traffic to the cone outer segments appropriately, and rapid cone degeneration occurred. Cone opsin mistrafficking in both models was arrested on 11-cis retinal administration. CONCLUSIONS These data show that the Lrat-/- and Rpe65-/- mice are comparable models for studies of Leber congenital amaurosis and that the destructive cone opsin mistrafficking is caused by the lack of 11-cis retinal.

Collaboration


Dive into the Jeanne M. Frederick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Li

University of Utah

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ching-Kang Chen

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge