Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne M. Link is active.

Publication


Featured researches published by Jeanne M. Link.


The Journal of Nuclear Medicine | 2008

Molecular Imaging of Hypoxia

Kenneth A. Krohn; Jeanne M. Link; Ralph P. Mason

Hypoxia, a condition of insufficient O2 to support metabolism, occurs when the vascular supply is interrupted, as in stroke or myocardial infarction, or when a tumor outgrows its vascular supply. When otherwise healthy tissues lose their O2 supply acutely, the cells usually die, whereas when cells gradually become hypoxic, they adapt by up-regulating the production of numerous proteins that promote their survival. These proteins slow the rate of growth, switch the mitochondria to glycolysis, stimulate growth of new vasculature, inhibit apoptosis, and promote metastatic spread. The consequence of these changes is that patients with hypoxic tumors invariably experience poor outcome to treatment. This has led the molecular imaging community to develop assays for hypoxia in patients, including regional measurements from O2 electrodes placed under CT guidance, several nuclear medicine approaches with imaging agents that accumulate with an inverse relationship to O2, MRI methods that measure either oxygenation directly or lactate production as a consequence of hypoxia, and optical methods with NIR and bioluminescence. The advantages and disadvantages of these approaches are reviewed, along with the individual strategies for validating different imaging methods. Ultimately the proof of value is in the clinical performance to predict outcome, select an appropriate cohort of patients to benefit from a hypoxia-directed treatment, or plan radiation fields that result in better local control. Hypoxia imaging in support of molecular medicine has become an important success story over the last decade and provides a model and some important lessons for development of new molecular imaging probes or techniques.


Journal of Clinical Oncology | 2006

Quantitative Fluoroestradiol Positron Emission Tomography Imaging Predicts Response to Endocrine Treatment in Breast Cancer

Hannah M. Linden; Svetlana Stekhova; Jeanne M. Link; Julie R. Gralow; Robert B. Livingston; Georgiana K. Ellis; Philip H. Petra; Lanell M. Peterson; Erin K. Schubert; Lisa K. Dunnwald; Kenneth A. Krohn; David A. Mankoff

PURPOSE In breast cancer, [(18)F]fluoroestradiol (FES) positron emission tomography (PET) correlates with estrogen receptors (ER) expression and predicts response to tamoxifen. We tested the ability of FES-PET imaging to predict response to salvage hormonal treatment in heavily pretreated metastatic breast cancer patients, predominantly treated with aromatase inhibitors. PATIENTS AND METHODS Initial FES uptake measurements in 47 patients with ER-positive tumors were correlated with subsequent tumor response to 6 months of hormonal treatment. Most patients had bone dominant disease and prior tamoxifen exposure. Response was compared to initial FES-PET uptake, measured qualitatively and quantitatively using standardized uptake value (SUV) and estradiol-binding flux. RESULTS Eleven of 47 patients (23%) had an objective response. While no patients with absent FES uptake had a response to treatment, the association between qualitative FES-PET results and response was not significant (P = .14). However, quantitative FES uptake and response were significantly associated; zero of 15 patients with initial SUV less than 1.5 responded to hormonal therapy, compared with 11 of 32 patients (34%) with SUV higher than 1.5 (P < .01). In the subset of patients whose tumors did not overexpress HER2/neu, 11 of 24 patients (46%) with SUV higher than 1.5 responded. CONCLUSION Quantitative FES-PET can predict response to hormonal therapy and may help guide treatment selection. Treatment selection using quantitative FES-PET in our patient series would have increased the rate of response from 23% to 34% overall, and from 29% to 46% in the subset of patients lacking HER2/neu overexpression. A multi-institutional collaborative trial would permit definitive assessment of the value of FES-PET for therapeutic decision making.


Clinical Pharmacology & Therapeutics | 2005

Imaging P-glycoprotein Transport Activity at the Human Blood-brain Barrier with Positron Emission Tomography

Lucy Sasongko; Jeanne M. Link; Mark Muzi; David A. Mankoff; Xiaodong Yang; Ann C. Collier; Steven C. Shoner; Jashvant D. Unadkat

Numerous knockout mouse studies have revealed that P‐glycoprotein (P‐gp) significantly limits drug distribution across the mouse blood‐brain barrier (BBB). To determine the importance of P‐gp at the human BBB, we developed a state‐of‐the‐art, noninvasive, quantitative imaging technique to measure P‐gp activity by use of carbon 11‐labeled verapamil as the P‐gp substrate and cyclosporine (INN, ciclosporin) as the P‐gp inhibitor.


Clinical Cancer Research | 2005

The Progress and Promise of Molecular Imaging Probes in Oncologic Drug Development

Gary J. Kelloff; Kenneth A. Krohn; Steven M. Larson; Ralph Weissleder; David A. Mankoff; John M. Hoffman; Jeanne M. Link; Kathryn Z. Guyton; William C. Eckelman; Howard I. Scher; Joyce O'Shaughnessy; Bruce D. Cheson; Caroline C. Sigman; James L. Tatum; George Q. Mills; Daniel C. Sullivan; Janet Woodcock

As addressed by the recent Food and Drug Administration Critical Path Initiative, tools are urgently needed to increase the speed, efficiency, and cost-effectiveness of drug development for cancer and other diseases. Molecular imaging probes developed based on recent scientific advances have great potential as oncologic drug development tools. Basic science studies using molecular imaging probes can help to identify and characterize disease-specific targets for oncologic drug therapy. Imaging end points, based on these disease-specific biomarkers, hold great promise to better define, stratify, and enrich study groups and to provide direct biological measures of response. Imaging-based biomarkers also have promise for speeding drug evaluation by supplementing or replacing preclinical and clinical pharmacokinetic and pharmacodynamic evaluations, including target interaction and modulation. Such analyses may be particularly valuable in early comparative studies among candidates designed to interact with the same molecular target. Finally, as response biomarkers, imaging end points that characterize tumor vitality, growth, or apoptosis can also serve as early surrogates of therapy success. This article outlines the scientific basis of oncology imaging probes and presents examples of probes that could facilitate progress. The current regulatory opportunities for new and existing probe development and testing are also reviewed, with a focus on recent Food and Drug Administration guidance to facilitate early clinical development of promising probes.


Clinical Cancer Research | 2008

Regional Hypoxia in Glioblastoma Multiforme Quantified with [18F]Fluoromisonidazole Positron Emission Tomography before Radiotherapy: Correlation with Time to Progression and Survival

Alexander M. Spence; Mark Muzi; Kristin R. Swanson; Finbarr O'Sullivan; Jason K. Rockhill; Joseph G. Rajendran; Tom C H Adamsen; Jeanne M. Link; Paul E. Swanson; Kevin Yagle; Robert C. Rostomily; Daniel L. Silbergeld; Kenneth A. Krohn

Purpose: Hypoxia is associated with resistance to radiotherapy and chemotherapy and activates transcription factors that support cell survival and migration. We measured the volume of hypoxic tumor and the maximum level of hypoxia in glioblastoma multiforme before radiotherapy with [18F]fluoromisonidazole positron emission tomography to assess their impact on time to progression (TTP) or survival. Experimental Design: Twenty-two patients were studied before biopsy or between resection and starting radiotherapy. Each had a 20-minute emission scan 2 hours after i.v. injection of 7 mCi of [18F]fluoromisonidazole. Venous blood samples taken during imaging were used to create tissue to blood concentration (T/B) ratios. The volume of tumor with T/B values above 1.2 defined the hypoxic volume (HV). Maximum T/B values (T/Bmax) were determined from the pixel with the highest uptake. Results: Kaplan-Meier plots showed shorter TTP and survival in patients whose tumors contained HVs or tumor T/Bmax ratios greater than the median (P ≤ 0.001). In univariate analyses, greater HV or tumor T/Bmax were associated with shorter TTP or survival (P < 0.002). Multivariate analyses for survival and TTP against the covariates HV (or T/Bmax), magnetic resonance imaging (MRI) T1Gd volume, age, and Karnovsky performance score reached significance only for HV (or T/Bmax; P < 0.03). Conclusions: The volume and intensity of hypoxia in glioblastoma multiforme before radiotherapy are strongly associated with poorer TTP and survival. This type of imaging could be integrated into new treatment strategies to target hypoxia more aggressively in glioblastoma multiforme and could be applied to assess the treatment outcomes.


The Journal of Nuclear Medicine | 2008

Quantitative Imaging of Estrogen Receptor Expression in Breast Cancer with PET and 18F-Fluoroestradiol

Lanell M. Peterson; David A. Mankoff; Thomas J. Lawton; Kevin Yagle; Erin K. Schubert; Svetlana Stekhova; Allen M. Gown; Jeanne M. Link; Timothy J. Tewson; Kenneth A. Krohn

The PET compound 18F-fluoroestradiol (18F-FES) has been developed and tested as an agent for the imaging of estrogen receptor (ER) expression in vivo. 18F-FES uptake has been shown to correlate with ER expression assayed in vitro by radioligand binding; however, immunohistochemistry (IHC) rather than radioligand binding is used most often to measure ER expression in clinical practice. We therefore compared 18F-FES uptake with ER expression assayed in vitro by IHC with both qualitative and semiquantitative measures. Methods: Seventeen patients with primary or metastatic breast cancer were studied with dynamic 18F-FES PET; cancer tissue samples, collected close to the time of imaging, were assayed for ER expression by IHC. For each tumor, partial-volume-corrected measures of 18F-FES uptake were compared with ER expression measured by 3 different ER scoring methods: qualitative scoring (0–3+), the Allred score (0–10), and a computerized IHC index. Results: There was excellent agreement (r = 0.99) between observers using IHC as well as the different methods of measuring ER content (P < 0.001). ER-negative tumors had 18F-FES partial-volume-corrected standardized uptake values of less than 1.0, whereas ER-positive tumors had values above 1.1. Correlation coefficients for the different measures of ER content and the different measures of 18F-FES uptake ranged from 0.57 to 0.73, with the best correlation being between the computerized IHC index and 18F-FES partial-volume-corrected standardized uptake values. Conclusion: Our results showed good agreement between 18F-FES PET and ER expression measured by IHC. 18F-FES imaging may be a useful tool for aiding in the assessment of ER status, especially in patients with multiple tumors or for tumors that are difficult to biopsy.


Archives of Environmental Contamination and Toxicology | 1987

Improved methodology for a sea urchin sperm cell bioassay for marine waters

Paul A. Dinnel; Jeanne M. Link; Quentin J. Stober

A simple sperm/fertilization bioassay, primarily using sea urchin (and sand dollar) gametes, was improved to yield a quick, sensitive, and cost-effective procedure for measuring toxicity in marine waters. Standard sperm bioassays are conducted by exposing sperm cells to test solutions for 60 min prior to addition of eggs to the test solution for fertilization. Reduced fertilization success (as indicated by the presence or absence of the obvious fertilization membrane) is used as an indicator of toxic effects on sperm viability and/or the fertilization response. This study, in conjunction with earlier work, has shown that the results of sperm bioassays can be affected by a number of factors including temperature, pH, salinity, sperm:egg ratios, sperm exposure times, test materials, and echinoid species. Each of these factors have been considered in designing the “standard” conditions for the improved test. Examples of the effect of these factors on the test results are illustrated, using silver as a reference toxicant.


The Journal of Nuclear Medicine | 2008

Tumor Receptor Imaging

David A. Mankoff; Jeanne M. Link; Hannah M. Linden; Lavanya Sundararajan; Kenneth A. Krohn

Tumor receptors play an important role in carcinogenesis and tumor growth and have been some of the earliest targets for tumor-specific therapy, for example, the estrogen receptor in breast cancer. Knowledge of receptor expression is key for therapy directed at tumor receptors and traditionally has been obtained by assay of biopsy material. Tumor receptor imaging offers complementary information that includes evaluation of the entire tumor burden and characterization of the heterogeneity of tumor receptor expression. The nature of the ligand–receptor interaction poses a challenge for imaging—notably, the requirement for a low molecular concentration of the imaging probe to avoid saturating the receptor and increasing the background because of nonspecific uptake. For this reason, much of the work to date in tumor receptor imaging has been done with radionuclide probes. In this overview of tumor receptor imaging, aspects of receptor biochemistry and biology that underlie tumor receptor imaging are reviewed, with the estrogen–estrogen receptor system in breast cancer as an illustrative example. Examples of progress in radionuclide receptor imaging for 3 receptor systems—steroid receptors, somatostatin receptors, and growth factor receptors—are highlighted, and recent investigations of receptor imaging with other molecular imaging modalities are reviewed.


Clinical Cancer Research | 2007

Tumor-Specific Positron Emission Tomography Imaging in Patients: [18F] Fluorodeoxyglucose and Beyond

David A. Mankoff; Janet F. Eary; Jeanne M. Link; Mark Muzi; Joseph G. Rajendran; Alexander M. Spence; Kenneth A. Krohn

Biochemical and molecular imaging of cancer using positron emission tomography (PET) plays an increasing role in the care of cancer patients. Most clinical work to date uses the glucose analogue [18F]fluorodeoxyglucose (FDG) to detect accelerated and aberrant glycolysis present in most tumors. Although clinical FDG PET has been used largely to detect and localize cancer, more detailed studies have yielded biological insights and showed the utility of FDG as a prognostic marker and as a tool for therapeutic response evaluation. As cancer therapy becomes more targeted and individualized, it is likely that PET radiopharmaceuticals other than FDG, aimed at more specific aspects of cancer biology, will also play a role in guiding cancer therapy. Clinical trials designed to test and validate new PET agents will need to incorporate rigorous quantitative image analysis and adapt to the evolving use of imaging as a biomarker and will need to incorporate cancer outcomes, such as survival into study design.


Archives of Environmental Contamination and Toxicology | 1989

Comparative sensitivity of sea urchin sperm bioassays to metals and pesticides.

Paul A. Dinnel; Jeanne M. Link; Quentin J. Stober; M. W. Letourneau; W. E. Roberts

A simple sperm/fertilization bioassay, primarily using sea urchin gametes, has been developed and used by a variety of laboratories. This assay was recently refined into a standard test and is now being used by the U.S. Environmental Protection Agency and others for toxicity testing in marine waters. One factor that has lagged behind the development of this assay is the comparison of its sensitivity to various common toxicants as compared to other bioassay systems and life stages of other marine organisms. The objective of this study was to compare the sensitivity of a standardized sea urchin sperm/fertilization assay to the responses of embryo, larval, and adult marine organisms to metals (Ag, Cd, Cu, Pb, Zn) and pesticides (DDT, Dieldrin, Endrin, Endosulfan) added to natural seawater. The results, although highly variable, generally showed that sperm/fertilization and embryo assays were quite sensitive to the metals tested, but that the larval and adult assays were more sensitive to the pesticides. These comparative data, together with other studies of complex effluents, show that the standardized sperm/ fertilization bioassay is an especially quick and useful tool for biomonitoring of marine waters.

Collaboration


Dive into the Jeanne M. Link's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Muzi

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Janet F. Eary

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge