Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne M. Nerbonne is active.

Publication


Featured researches published by Jeanne M. Nerbonne.


Neuron | 2000

Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP

Guoping Feng; Rebecca H. Mellor; Michael Bernstein; Cynthia R. Keller-Peck; Quyen T. Nguyen; Mia Wallace; Jeanne M. Nerbonne; Jeff W. Lichtman; Joshua R. Sanes

We generated transgenic mice in which red, green, yellow, or cyan fluorescent proteins (together termed XFPs) were selectively expressed in neurons. All four XFPs labeled neurons in their entirety, including axons, nerve terminals, dendrites, and dendritic spines. Remarkably, each of 25 independently generated transgenic lines expressed XFP in a unique pattern, even though all incorporated identical regulatory elements (from the thyl gene). For example, all retinal ganglion cells or many cortical neurons were XFP positive in some lines, whereas only a few ganglion cells or only layer 5 cortical pyramids were labeled in others. In some lines, intense labeling of small neuronal subsets provided a Golgi-like vital stain. In double transgenic mice expressing two different XFPs, it was possible to differentially label 3 neuronal subsets in a single animal.


Circulation Research | 1997

Outward K + Current Densities and Kv1.5 Expression Are Reduced in Chronic Human Atrial Fibrillation

David R. Van Wagoner; Amber L. Pond; Patrick M. McCarthy; James S. Trimmer; Jeanne M. Nerbonne

Chronic atrial fibrillation is associated with a shortening of the atrial action potential duration and atrial refractory period. To test the hypothesis that these changes are mediated by changes in the density of specific atrial K+ currents, we compared the density of K+ currents in left and right atrial myocytes and the density of delayed rectifier K+ channel alpha-subunit proteins (Kv1.5 and Kv2.1) in left and right atrial appendages from patients (n = 28) in normal sinus rhythm with those from patients (n = 15) in chronic atrial fibrillation (AF). Contrary to our expectations, nystatin-perforated patch recordings of whole-cell K+ currents revealed significant reductions in both the inactivating (ITO) and sustained (IKsus) outward K+ current densities in left and right atrial myocytes isolated from patients in chronic AF, relative to the ITO and IKsus densities in myocytes isolated from patients in normal sinus rhythm. Quantitative Western blot analysis revealed that although there was no change in the expression of the Kv2.1 protein, the expression of Kv1.5 protein was reduced by > 50% in both the left and the right atrial appendages of AF patients. The finding that Kv1.5 expression is reduced in parallel with the reduction in delayed rectifier K+ current density is consistent with recent suggestions that Kv1.5 underlies the major component of the delayed rectifier K+ current in human atrial myocytes, the ultrarapid delayed rectifier K+ current, IKur. The unexpected finding of reduced voltage-gated outward K+ current densities in atrial myocytes from AF patients demonstrates the need to further examine the details of the electrophysiological remodeling that occurs during AF to enable more effective and safer therapeutic strategies to be developed.


Circulation Research | 1999

Atrial L-Type Ca2+ Currents and Human Atrial Fibrillation

David R. Van Wagoner; Amber Pond; Michelle Lamorgese; Sandra Rossie; Patrick M. McCarthy; Jeanne M. Nerbonne

Chronic atrial fibrillation (AF) is characterized by decreased atrial contractility, shortened action potential duration, and decreased accommodation of action potential duration to changes in activation rate. Studies on experimental animal models of AF implicate a reduction in L-type Ca2+ current (I(Ca)) density in these changes. To evaluate the effect of AF on human I(Ca), we compared I(Ca) in atrial myocytes isolated from 42 patients in normal sinus rhythm at the time of cardiac surgery with that of 11 chronic AF patients. I(Ca) was significantly reduced in the myocytes of patients with chronic AF (mean -3.35+/-0.5 pA/pF versus -9.13+/-1. 0 pA/pF in the controls), with no difference between groups in the voltage dependence of activation or steady-state inactivation. Although I(Ca) was lower in myocytes from the chronic AF patients, their response to maximal beta-adrenergic stimulation was not impaired. Postoperative AF frequently follows cardiac surgery. Half of the patients in the control group (19/38) of this study experienced postoperative AF. Whereas chronic AF is characterized by reduced atrial I(Ca), the patients with the greatest I(Ca) had an increased incidence of postoperative AF, independent of patient age or diagnosis. This observation is consistent with the concept that calcium overload may be an important factor in the initiation of AF. The reduction in functional I(Ca) density in myocytes from the atria of chronic AF patients may thus be an adaptive response to the arrhythmia-induced calcium overload.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content

Brian N. Finck; Xianlin Han; Michael Courtois; Franck Aimond; Jeanne M. Nerbonne; Attila Kovacs; Richard W. Gross; Daniel P. Kelly

To explore the role of peroxisome proliferator-activated receptor α (PPARα)-mediated derangements in myocardial metabolism in the pathogenesis of diabetic cardiomyopathy, insulinopenic mice with PPARα deficiency (PPARα−/−) or cardiac-restricted overexpression [myosin heavy chain (MHC)-PPAR] were characterized. Whereas PPARα−/− mice were protected from the development of diabetes-induced cardiac hypertrophy, the combination of diabetes and the MHC-PPAR genotype resulted in a more severe cardiomyopathic phenotype than either did alone. Cardiomyopathy in diabetic MHC-PPAR mice was accompanied by myocardial long-chain triglyceride accumulation. The cardiomyopathic phenotype was exacerbated in MHC-PPAR mice fed a diet enriched in triglyceride containing long-chain fatty acid, an effect that was reversed by discontinuing the high-fat diet and absent in mice given a medium-chain triglyceride-enriched diet. Reactive oxygen intermediates were identified as candidate mediators of cardiomyopathic effects in MHC-PPAR mice. These results link dysregulation of the PPARα gene regulatory pathway to cardiac dysfunction in the diabetic and provide a rationale for serum lipid-lowering strategies in the treatment of diabetic cardiomyopathy.


The Journal of Physiology | 2000

Molecular basis of functional voltage‐gated K+ channel diversity in the mammalian myocardium

Jeanne M. Nerbonne

In the mammalian heart, Ca2+‐independent, depolarization‐activated potassium (K+) currents contribute importantly to shaping the waveforms of action potentials, and several distinct types of voltage‐gated K+ currents that subserve this role have been characterized. In most cardiac cells, transient outward currents, Ito,f and/or Ito,s, and several components of delayed reactivation, including IKr, IKs, IKur and IK,slow, are expressed. Nevertheless, there are species, as well as cell‐type and regional, differences in the expression patterns of these currents, and these differences are manifested as variations in action potential waveforms. A large number of voltage‐gated K+ channel pore‐forming (α) and accessory (β, minK, MiRP) subunits have been cloned from or shown to be expressed in heart, and a variety of experimental approaches are being exploited in vitro and in vivo to define the relationship(s) between these subunits and functional voltage‐gated cardiac K+ channels. Considerable progress has been made in defining these relationships recently, and it is now clear that distinct molecular entities underlie the various electrophysiologically distinct repolarizing K+ currents (i.e. Ito,f, Ito,s, IKr, IKs, IKur, IK,slow, etc.) in myocyardial cells.


Circulation Research | 2005

Transgenic Expression of Fatty Acid Transport Protein 1 in the Heart Causes Lipotoxic Cardiomyopathy

Hsiu-Chiang Chiu; Attila Kovacs; Robert M. Blanton; Xianlin Han; Michael Courtois; Carla J. Weinheimer; Kathryn A. Yamada; Sylvain Brunet; Haodong Xu; Jeanne M. Nerbonne; Michael J. Welch; Nicole Fettig; Terry L. Sharp; Nandakumar Sambandam; Krista Olson; Daniel S. Ory; Jean E. Schaffer

Evidence is emerging that systemic metabolic disturbances contribute to cardiac myocyte dysfunction and clinically apparent heart failure, independent of associated coronary artery disease. To test the hypothesis that perturbation of lipid homeostasis in cardiomyocytes contributes to cardiac dysfunction, we engineered transgenic mice with cardiac-specific overexpression of fatty acid transport protein 1 (FATP1) using the &agr;-myosin heavy chain gene promoter. Two independent transgenic lines demonstrate 4-fold increased myocardial free fatty acid (FFA) uptake that is consistent with the known function of FATP1. Increased FFA uptake in this model likely contributes to early cardiomyocyte FFA accumulation (2-fold increased) and subsequent increased cardiac FFA metabolism (2-fold). By 3 months of age, transgenic mice have echocardiographic evidence of impaired left ventricular filling and biatrial enlargement, but preserved systolic function. Doppler tissue imaging and hemodynamic studies confirm that these mice have predominantly diastolic dysfunction. Furthermore, ambulatory ECG monitoring reveals prolonged QTc intervals, reflecting reductions in the densities of repolarizing, voltage-gated K+ currents in ventricular myocytes. Our results show that in the absence of systemic metabolic disturbances, such as diabetes or hyperlipidemia, perturbation of cardiomyocyte lipid homeostasis leads to cardiac dysfunction with pathophysiological findings similar to those in diabetic cardiomyopathy. Moreover, the MHC-FATP model supports a role for FATPs in FFA import into the heart in vivo.


Circulation | 2010

Sudden Cardiac Death Prediction and Prevention Report From a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop

Glenn I. Fishman; Sumeet S. Chugh; John P. DiMarco; Christine M. Albert; Mark E. Anderson; Robert O. Bonow; Alfred E. Buxton; Peng Sheng Chen; Mark Estes; Xavier Jouven; Raymond Y. Kwong; David A. Lathrop; Alice M. Mascette; Jeanne M. Nerbonne; Brian O'Rourke; Richard L. Page; Dan M. Roden; David S. Rosenbaum; Nona Sotoodehnia; Natalia A. Trayanova; Zhi Jie Zheng

Despite the significant decline in coronary artery disease (CAD) mortality in the second half of the 20th century,1 sudden cardiac death (SCD) continues to claim 250 000 to 300 000 US lives annually.2 In North America and Europe the annual incidence of SCD ranges between 50 to 100 per 100 000 in the general population.3,–,6 Because of the absence of emergency medical response systems in most world regions, worldwide estimates are currently not available.7 However, even in the presence of advanced first responder systems for resuscitation of out-of-hospital cardiac arrest, the overall survival rate in a recent North American analysis was 4.6%.8 SCD can manifest as ventricular tachycardia (VT), ventricular fibrillation (VF), pulseless electric activity (PEA), or asystole. In a significant proportion of patients, SCD can present without warning or a recognized triggering mechanism. The mean age of those affected is in the mid 60s, and at least 40% of patients will suffer SCD before the age of 65.4 Consequently, enhancement of methodologies for prediction and prevention of SCD acquires a unique and critical importance for management of this significant public health issue. Prediction and prevention of SCD is an area of active investigation, but considerable challenges persist that limit the efficacy and cost-effectiveness of available methodologies.7,9,10 It was recognized early on that optimization of SCD risk stratification will require integration of multi-disciplinary efforts at the bench and bedside, with studies in the general population.11,–,13 This integration has yet to be effectively accomplished. There is also increasing awareness that more investigation needs to be directed toward identification of early predictors of SCD.14 Significant advancements have occurred for risk prediction in the inherited channelopathies15,–,17 and …


Circulation Research | 1998

Functional Knockout of the Transient Outward Current, Long-QT Syndrome, and Cardiac Remodeling in Mice Expressing a Dominant-Negative Kv4 α Subunit

Dianne M. Barry; Haodong Xu; Richard B. Schuessler; Jeanne M. Nerbonne

A novel in vivo experimental strategy, involving cell type-specific expression of a dominant-negative K+ channel pore-forming alpha subunit, was developed and exploited to probe the molecular identity of the cardiac transient outward K+ current (I(to)). A point mutation (W to F) was introduced at position 362 in the pore region of Kv4.2 to produce a nonconducting mutant (Kv4.2W362F) subunit. Coexpression of Kv4.2W362F with Kv4.2 (or Kv4.3) attenuates the wild-type currents, and the effect is subfamily specific; ie, Kv4.2W362F does not affect heterologously expressed Kv1.4 currents. With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, several lines of Kv4.2W362F transgenic mice were generated. Electrophysiological recordings reveal that I(to) is selectively eliminated in ventricular myocytes isolated from transgenic mice expressing Kv4.2W362F, thereby demonstrating directly that the Kv 4 subfamily underlies I(to) in the mammalian heart. Functional knockout of I(to) leads to marked increases in action potential durations in ventricular myocytes and to prolongation of the QT interval in surface ECG recordings. In addition, a novel rapidly activating and inactivating K+ current, which is not detectable in myocytes from nontransgenic littermates, is evident in Kv4.2W362F-expressing ventricular cells. Importantly, these results demonstrate that electrical remodeling occurs in the heart when the expression of endogenous K- channels is altered.


Circulation Research | 2010

MicroRNA-133a Protects Against Myocardial Fibrosis and Modulates Electrical Repolarization Without Affecting Hypertrophy in Pressure-Overloaded Adult Hearts

Scot J. Matkovich; Wei Wang; Yizheng Tu; William H. Eschenbacher; Lisa E. Dorn; Gianluigi Condorelli; Abhinav Diwan; Jeanne M. Nerbonne; Gerald W. Dorn

Rationale: MicroRNA (miR)-133a regulates cardiac and skeletal muscle differentiation and plays an important role in cardiac development. Because miR-133a levels decrease during reactive cardiac hypertrophy, some have considered that restoring miR-133a levels could suppress hypertrophic remodeling. Objective: To prevent the “normal” downregulation of miR-133a induced by an acute hypertrophic stimulus in the adult heart. Methods and Results: miR-133a is downregulated in transverse aortic constriction (TAC) and isoproterenol-induced hypertrophy, but not in 2 genetic hypertrophy models. Using MYH6 promoter-directed expression of a miR-133a genomic precursor, increased cardiomyocyte miR-133a had no effect on postnatal cardiac development assessed by measures of structure, function, and mRNA profile. However, increased miR-133a levels increased QT intervals in surface electrocardiographic recordings and action potential durations in isolated ventricular myocytes, with a decrease in the fast component of the transient outward K+ current, Ito,f, at baseline. Transgenic expression of miR-133a prevented TAC-associated miR-133a downregulation and improved myocardial fibrosis and diastolic function without affecting the extent of hypertrophy. Ito,f downregulation normally observed post-TAC was prevented in miR-133a transgenic mice, although action potential duration and QT intervals did not reflect this benefit. miR-133a transgenic hearts had no significant alterations of basal or post-TAC mRNA expression profiles, although decreased mRNA and protein levels were observed for the Ito,f auxiliary KChIP2 subunit, which is not a predicted target. Conclusions: These results reveal striking differences between in vitro and in vivo phenotypes of miR expression, and further suggest that mRNA signatures do not reliably predict either direct miR targets or major miR effects.


Circulation Research | 1995

Differential Expression of Voltage-Gated K+ Channel Subunits in Adult Rat Heart Relation to Functional K+ Channels?

Dianne M. Barry; James S. Trimmer; John P. Merlie; Jeanne M. Nerbonne

Polyclonal antibodies against each of the K+ channel subunits (Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2) shown previously to be expressed in adult rat heart at the mRNA level were used to examine the distributions of these K+ channel subunits in adult rat atrial and ventricular membranes. Immunohistochemistry on isolated adult rat ventricular myocytes revealed strong labeling with the anti-Kv4.2 and anti-Kv1.2 antibodies. Although somewhat weaker (than with anti-Kv1.2 or anti-Kv4.2), positive staining was also observed with the anti-Kv1.5 and anti-Kv2.1 antibodies. Ventricular myocytes exposed to the anti-Kv1.4 antibody, in contrast, did not appear significantly different from background. Qualitatively similar results were obtained on isolated adult rat atrial myocytes. Western blots of atrial and ventricular membrane proteins confirmed the presence of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 and revealed differences in the relative abundances of these subunits in the two membrane preparations. Kv4.2, for example, is more abundant in ventricular than in atrial membranes, whereas Kv1.2 and Kv2.1 are higher in atrial membranes; Kv1.5 levels are comparable in the two preparations. In contrast to these results, nothing was detected in Western blots of atrial or ventricular membrane proteins with the anti-Kv1.4 antibody at concentrations that revealed intense labeling of a 97-kD protein in adult rat brain membranes. A very faint band was detected at 97 kD in the atrial and ventricular preparations when the anti-Kv1.4 antibody was used at a 5- to 10-fold higher concentration. The simplest interpretation of these results is that Kv1.4 is not an abundant protein in adult rat atrial or ventricular myocytes. Therefore, it seems unlikely that Kv1.4 plays an important role in the formation of functional depolarization-activated K+ channels in these cells. The relation(s) between the (other four) K+ channel subunits and the depolarization-activated K+ channels identified electrophysiologically in adult rat atrial and ventricular myocytes is discussed in the present study.

Collaboration


Dive into the Jeanne M. Nerbonne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kathryn A. Yamada

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Weinong Guo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kai-Chien Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Huilin Li

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Norris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicholas C. Foeger

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David M. Ornitz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Haodong Xu

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge