Jeannette M. Byrne
Memorial University of Newfoundland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeannette M. Byrne.
Applied Physiology, Nutrition, and Metabolism | 2011
David G. Behm; Sebastian Plewe; Philip Grage; Alireza Rabbani; Hamid Taghi Beigi; Jeannette M. Byrne; Duane C. Button
Middle-aged individuals may not respond in a similar manner as younger individuals. The studys objective was to examine the effect of static (SS) and dynamic stretching (DS) in young and middle-aged men on subsequent performance. Ten young (22 ± 1.4 years) and 8 middle-aged men (46.3 ± 6.5 years) participated in 3 conditions consisting of SS (4 × 30 s for right and left quadriceps, hamstrings, and plantar flexors), DS (8 × 30 s of bilateral butt kicks, walking lunges, and plantar flexors) and control. Dependent variables included sit and reach, hip extension flexibility, countermovement jump (CMJ) height, drop jump (DJ) height, static balance, reaction (RT) and movement time (MT). Measurements were taken pre-intervention, post- and 10 min post-intervention. A 3-way repeated measurement ANOVA revealed that the younger men had higher jump heights, faster RT and MT, and greater flexibility than the middle-aged men. DS significantly enhanced DJ (p = 0.04) and CMJ (p = 0.006) height compared with SS and control conditions. SS (p < 0.0001) and DS (p = 0.004) post-intervention sit and reach scores were significantly greater than pre-intervention scores. There were no significant differences between the SS and DS sit and reach scores. CMJ heights were impaired (p = 0.04) by SS. Conversely, DS post-intervention jump heights were significantly (p < 0.0001) higher than SS post-, control post-, and control 10 min post-intervention. SS-induced impairments and DS-induced enhancements of CMJ height were not affected by age. DS provided similar improvements in sit and reach scores as SS. DS is recommended as the most appropriate stretching routine prior to work or athletic performance for younger and middle-aged men.
Journal of Strength and Conditioning Research | 2014
Jeannette M. Byrne; Nicole S. Bishop; Andrew M. Caines; Kalynn A. Crane; Ashley M. Feaver; Gregory E.P. Pearcey
Abstract Byrne, JM, Bishop, NS, Caines, AM, Crane, KA, Feaver, AM, and Pearcey, GEP. Effect of using a suspension training system on muscle activation during the performance of a front plank exercise. J Strength Cond Res 28(11): 3049–3055, 2014—The objective of the study was to examine the effect of suspension training on muscle activation during performance of variations of the plank exercise. Twenty-one participants took part. All individuals completed 2 repetitions each of 4 different plank exercises that consisted of a floor based plank, or planks with arms suspended, feet suspended, or feet and arms suspended using a TRX Suspension System. During plank performance, muscle activation was recorded from rectus abdominis, external oblique, rectus femoris, and serratus anterior (SA) muscles using electromyography. All planks were performed for a total of 3 seconds. Resulting muscle activation data were amplitude normalized, and root mean square activation was then determined over the full 3 second duration of the exercise. A significant main effect of plank type was found for all muscles. Post hoc analysis and effect size examination indicated that abdominal muscle activation was higher in all suspended conditions compared to the floor based plank. The highest level of abdominal muscle activation occurred in the arms suspended and arms/feet suspended conditions, which did not differ from one another. Rectus femoris activation was greatest during the arms suspended condition, whereas SA activity peaked during normal and feet suspended planks. These results indicate that suspension training as performed in this study seems to be an effective means of increasing muscle activation during the plank exercise. Contrary to expectations, the additional instability created by suspending both the arms and feet did not result in any additional abdominal muscle activation. These findings have implications in prescription and progression of core muscle training programs.
Sports | 2016
Amanda M. George; Linda E. Rohr; Jeannette M. Byrne
Physical literacy is the degree of fitness, behaviors, knowledge, and fundamental movement skills (agility, balance, and coordination) a child has to confidently participate in physical activity. Active video games (AVG), like the Nintendo Wii, have emerged as alternatives to traditional physical activity by providing a non-threatening environment to develop physical literacy. This study examined the impact of AVGs on children’s (age 6–12, N = 15) physical literacy. For six weeks children played one of four pre-selected AVGs (minimum 20 min, twice per week). Pre and post measures of motivation, enjoyment, and physical literacy were completed. Results indicated a near significant improvement in aiming and catching (p = 0.06). Manual dexterity significantly improved in males (p = 0.001), and females felt significantly less pressured to engage in PA (p = 0.008). Overall, there appears to be some positive impact of an AVG intervention on components of physical literacy.
Journal of Strength and Conditioning Research | 2014
Saied Jalal Aboodarda; Jeannette M. Byrne; Michael Samson; Barry D. Wilson; Abdul Halim Mokhtar; David G. Behm
Abstract Aboodarda, SJ, Byrne, JM, Samson, M, Wilson, BD, Mokhtar, AH, and Behm, DG. Does performing drop jumps with additional eccentric loading improve jump performance? J Strength Cond Res 28(8): 2314–2323, 2014—Previous investigators have speculated that applying additional external load throughout the eccentric phase of the jumping movement could amplify the stretch-shortening cycle mechanism and modulate jumping performance and jump exercise intensity. The aims of this study, therefore, were to determine the effect of increased eccentric phase loading, as delivered using an elastic device, on drop jumps (DJs) performed from different drop heights. Of specific interest were changes in (a) the kinetics; eccentric and concentric impulse, rate of force development (RFD), concentric velocity and (b) the electromyographic (EMG) activity of leg muscles. In a randomized repeated-measure study, 15 highly resistance trained male subjects performed DJs from 3 heights (20, 35, and 50 cm) under 3 different conditions: body weight only (free DJ) and with elastic bands providing downward force equivalent to 20% (+20% DJ) and 30% (+30% DJ) of body mass. All DJs were recorded using video and force plate data that were synchronized with EMG data. Results demonstrated that using additional tensile load during the airborne and eccentric phases of the DJ could enhance eccentric impulse (p = 0.042) and RFD (p < 0.001) and resulted in small to moderate effect size (ES) increases in quadriceps intergrated EMG across the eccentric phase (0.23 > ES > 0.51). The observed greater eccentric loading, however, did not immediately alter concentric kinetics and jump height nor did it alter muscle activation levels during this phase. The findings indicated that, in addition to the conventional technique of increasing drop height, using a tensile load during the airborne and eccentric phases of the DJ could further improve eccentric loading of DJs. As it has been suggested that eccentric impulse and RFD are indicators of DJ exercise intensity, these findings suggest that the loaded DJs, using additional elastic load, may be an effective technique for improving DJ exercise intensity without acute effects on the jumping performance and neuromuscular activation level in highly trained athletes.
Archives of Physical Medicine and Rehabilitation | 2014
Tracy Penney; Michelle Ploughman; Mark W. Austin; David G. Behm; Jeannette M. Byrne
OBJECTIVES To determine the activation of the gluteus medius in persons with chronic, nonspecific low back pain compared with that in control subjects, and to determine the association of the clinical rating of the single leg stance (SLS) with chronic low back pain (CLBP) and gluteus medius weakness. DESIGN Cohort-control comparison. SETTING Academic research laboratory. PARTICIPANTS Convenience sample of people (n=21) with CLBP (>12wk) recruited by local physiotherapists, and age- and sex-matched controls (n=22). Subjects who received specific pain diagnoses were excluded. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Back pain using the visual analog scale (mm); back-related disability using the Oswestry Back Disability Index (%); strength of gluteus medius measured using a hand dynamometer (N/kg); SLS test; gluteus medius onset and activation using electromyography during unipedal stance on a forceplate. RESULTS Individuals in the CLBP group exhibited significant weakness in the gluteus medius compared with controls (right, P=.04; left, P=.002). They also had more pain (CLBP: mean, 20.50mm; 95% confidence interval [CI], 13.11-27.9mm; control subjects: mean, 1.77mm; 95% CI, -.21 to 3.75mm) and back-related disability (CLBP: mean, 18.52%; 95% CI, 14.46%-22.59%; control subjects: mean, .68%; 95% CI, -.41% to 1.77%), and reported being less physically active. Weakness was accompanied by increased gluteus medius activation during unipedal stance (R=.50, P=.001) but by no difference in muscle onset times. Although greater gluteus medius weakness was associated with greater pain and disability, there was no difference in muscle strength between those scoring positive and negative on the SLS test (right: F=.002, P=.96; left: F=.1.75, P=.19). CONCLUSIONS Individuals with CLBP had weaker gluteus medius muscles than control subjects without back pain. Even though there was no significant difference in onset time of the gluteus medius when moving to unipedal stance between the groups, the CLBP group had greater gluteus medius activation. A key finding was that a positive SLS test did not distinguish the CLBP group from the control group, nor was it a sign of gluteus medius weakness.
PLOS ONE | 2016
Carolyn A. Duncan; Tony G. J. Ingram; Avril Mansfield; Jeannette M. Byrne; William E. McIlroy
Central or postural set theory suggests that the central nervous system uses short term, trial to trial adaptation associated with repeated exposure to a perturbation in order to improve postural responses and stability. It is not known if longer-term prior experiences requiring challenging balance control carryover as long-term adaptations that influence ability to react in response to novel stimuli. The purpose of this study was to determine if individuals who had long-term exposure to balance instability, such as those who train on specific skills that demand balance control, will have improved ability to adapt to complex continuous multidirectional perturbations. Healthy adults from three groups: 1) experienced maritime workers (n = 14), 2) novice individuals with no experience working in maritime environments (n = 12) and 3) individuals with training in dance (n = 13) participated in the study. All participants performed a stationary standing task while being exposed to five 6 degree of freedom motions designed to mimic the motions of a ship at sea. The balance reactions (change-in-support (CS) event occurrences and characteristics) were compared between groups. Results indicate dancers demonstrated significantly fewer CS events than novices during the first trial, but did not perform as well as those with offshore experience. Linear trend analyses revealed that short-term adaptation across all five trials was dependent on the nature of participant experience, with dancers achieving postural stability earlier than novices, but later than those with offshore experience. These results suggest that long term previous experiences also have a significant influence on the neural control of posture and balance in the development of compensatory responses.
International Journal of Sports Medicine | 2016
N. J. Snow; Fabien A. Basset; Jeannette M. Byrne
Despite the abundance of barefoot running-related research, there have been no electromyography studies evaluating the effects of this mode of exercise on habitual users of minimalist footwear. The present study investigated differences in muscle activation during acute bouts of barefoot and shod running, in minimalist shoe users. 8 male participants ran on a motorized treadmill for 10 min under both conditions, at 70% maximal aerobic speed. Electromyographic data were sampled from the biceps femoris, gluteus maximus, gastrocnemius medialis, tibialis anterior, and vastus lateralis during both swing and stance. Root-mean-square analysis of electromyographic data was conducted to compare muscle activation between conditions. During stance, barefoot running resulted in greater muscle activity in gastrocnemius medialis and gluteus maximus, and lower muscle activity in tibialis anterior. During swing, barefoot running resulted in increased muscle activity in vastus lateralis and gastrocnemius medialus. These results indicate that, for minimalist shoe users, an acute bout of barefoot running results in significantly different lower-limb muscle activity. Increased activation in the above muscles presents a possible mechanism for injury, which should be considered during exercise prescription.
PeerJ | 2018
Nicholas J. Snow; Jason Blair; Graham Z. MacDonald; Jeannette M. Byrne; Fabien A. Basset
Background Converging evidence comparing barefoot (BF) and shod (SH) running highlights differences in foot-strike patterns and somatosensory feedback, among others. Anecdotal evidence from SH runners attempting BF running suggests a greater attentional demand may be experienced during BF running. However, little work to date has examined whether there is an attentional cost of BF versus SH running. Objective This exploratory study aimed to examine whether an acute bout of BF running would impact simple reaction time (SRT) compared to SH running, in a sample of runners naïve to BF running. Methods Eight male distance runners completed SRT testing during 10 min of BF or SH treadmill running at 70% maximal aerobic speed (17.9 ± 1.4 km h−1). To test SRT, participants were required to press a hand-held button in response to the flash of a light bulb placed in the center of their visual field. SRT was tested at 1-minute intervals during running. BF and SH conditions were completed in a pseudo-randomized and counterbalanced crossover fashion. SRT was defined as the time elapsed between the light bulb flash and the button press. SRT errors were also recorded and were defined as the number of trials in which a button press was not recorded in response to the light bulb flash. Results Overall, SRT later in the exercise bouts showed a statistically significant increase compared to earlier (p < 0.05). Statistically significant increases in SRT were present at 7 min versus 5 min (0.29 ± 0.02 s vs. 0.27 ± 0.02 s, p < 0.05) and at 9 min versus 2 min (0.29 ± 0.03 s vs. 0.27 ± 0.03 s, p < 0.05). However, BF running did not influence this increase in SRT (p > 0.05) or the number of SRT errors (17.6 ± 6.6 trials vs. 17.0 ± 13.0 trials, p > 0.05). Discussion In a sample of distance runners naïve to BF running, there was no statistically significant difference in SRT or SRT errors during acute bouts of BF and SH running. We interpret these results to mean that BF running does not have a greater attentional cost compared to SH running during a SRT task throughout treadmill running. Literature suggests that stride-to-stride gait modulation during running may occur predominately via mechanisms that preclude conscious perception, thus potentially attenuating effects of increased somatosensory feedback experienced during BF running. Future research should explore the present experimental paradigm in a larger sample using over-ground running trials, as well as employing different tests of attention.
Muscle & Nerve | 2016
Tony G. J. Ingram; Jenna M. Roddick; Jeannette M. Byrne
Introduction: The potential relationship between bilateral quadriceps inhibition in individuals with unilateral anterior knee pain (AKP) and gamma loop dysfunction is examined in this study. Methods: Twelve individuals with unilateral AKP and 10 healthy controls were recruited. Quadriceps voluntary activation (%VA) was quantified using a triggered interpolated twitch technique. Gamma loop function was assessed through knee extension maximum voluntary isometric contractions before and after 20 minutes of 50‐Hz patellar tendon vibration. Results: The AKP group exhibited 5.7% lower %VA bilaterally compared with controls (P = 0.039, Cohen d = 0.79). After prolonged vibration, both groups exhibited an average 8.5% reduction in knee extension force in each limb (P < 0.001, Cohen d = 0.85). Conclusions: Significant force reductions after vibration suggest that gamma loop dysfunction was not seen in either control or AKP participants. Bilateral quadriceps inhibition in the AKP group does not appear to be associated with gamma loop dysfunction. Muscle Nerve 53: 280–286, 2016
European Journal of Applied Physiology | 2014
Israel Halperin; Saied Jalal Aboodarda; Fabien A. Basset; Jeannette M. Byrne; David G. Behm