Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeannette Nardelli is active.

Publication


Featured researches published by Jeannette Nardelli.


The EMBO Journal | 2002

Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain

Miguel Manzanares; Jeannette Nardelli; Pascale Gilardi-Hebenstreit; Heather Marshall; François Giudicelli; María Teresa Martínez-Pastor; Robb Krumlauf; Patrick Charnay

In the segmented vertebrate hindbrain, the Hoxa3 and Hoxb3 genes are expressed at high relative levels in the rhombomeres (r) 5 and 6, and 5, respectively. The single enhancer elements responsible for these activities have been identified previously and shown to constitute direct targets of the transcription factor kreisler, which is expressed in r5 and r6. Here, we have analysed the contribution of the transcription factor Krox20, present in r3 and r5. Genetic analyses demonstrated that Krox20 is required for activity of the Hoxb3 r5 enhancer, but not of the Hoxa3 r5/6 enhancer. Mutational analysis of the Hoxb3 r5 enhancer, together with ectopic expression experiments, revealed that Krox20 binds to the enhancer and synergizes with kreisler to promote Hoxb3 transcription, restricting enhancer activity to their domain of overlap, r5. These analyses also suggested contributions from an Ets‐related factor and from putative factors likely to heterodimerize with kreisler. The integration of multiple independent inputs present in overlapping domains by a single enhancer is likely to constitute a general mechanism for the patterning of subterritories during vertebrate development.


Acta Neuropathologica | 2011

Inner ear lesions in congenital cytomegalovirus infection of human fetuses

Natacha Teissier; Anne-Lise Delezoide; Anne-Elisabeth Mas; Suonavy Khung-Savatovsky; Bettina Bessières; Jeannette Nardelli; Christelle Vauloup-Fellous; Olivier Picone; Nadira Houhou; Jean-François Oury; Thierry Van Den Abbeele; Pierre Gressens; Homa Adle-Biassette

Congenital cytomegalovirus (CMV) infection is the leading cause of non-hereditary congenital sensorineural hearing loss (SNHL). The natural course and the pathophysiology of inner ear lesions during human fetal CMV infection have not yet been reported. Inner ear lesions were investigated in six CMV-infected fetuses aged 19–35 postconceptional weeks and correlated with central nervous system (CNS) lesions. All the fetuses had high viral loads in the amniotic fluid and severe visceral and CNS lesions visible by ultrasound. Diffuse lesions consisting of both cytomegalic cells containing inclusion bodies and inflammation were found within all studied structures including the inner ear, brain, other organs, and placenta, suggesting hematogenous dissemination. Cochlear infection was consistently present and predominated in the stria vascularis (5/6), whereas the supporting cells in the organ of Corti were less often involved (2/6). Vestibular infection, found in 4/6 cases, was florid; the non-sensory epithelia, including the dark cells, were extensively infected. The endolymphatic sac was infected in 1 of 3 cases. The severity of inner ear infection was correlated with the CNS lesions, confirming the neurotropism of CMV. This study documenting infection of the structures involved in endolymph secretion and potassium homeostasis in fetuses with high amniotic fluid viral loads suggests that potassium dysregulation in the endolymphatic compartment of the inner ear may lead to secondary degeneration of the sensory structures. In addition, the occurrence of SNHL depends on the intensity and duration of the viral infection and inflammation.


Journal of Neuropathology and Experimental Neurology | 2014

Cytomegalovirus-induced brain malformations in fetuses.

Natacha Teissier; Catherine Fallet-Bianco; Anne-Lise Delezoide; Annie Laquerrière; Pascale Marcorelles; Suonavy Khung-Savatovsky; Jeannette Nardelli; Sara Cipriani; Zsolt Csaba; Olivier Picone; Jeffrey A. Golden; Thierry Van Den Abbeele; Pierre Gressens; Homa Adle-Biassette

Neurologic morbidity associated with congenital cytomegalovirus (CMV) infection is a major public health concern. The pathogenesis of cerebral lesions remains unclear. We report the neuropathologic substrates, the immune response, and the cellular targets of CMV in 16 infected human fetal brains aged 23 to 28.5 gestational weeks. Nine cases were microcephalic, 10 had extensive cortical lesions, 8 had hippocampal abnormalities, and 5 cases showed infection of the olfactory bulb. The density of CMV-immunolabeled cells correlated with the presence of microcephaly and the extent of brain abnormalities. Innate and adaptive immune responses were present but did not react against all CMV-infected cells. Cytomegalovirus infected all cell types but showed higher tropism for stem cells/radial glial cells. The results indicate that 2 main factors influence the neuropathologic outcome at this stage: the density of CMV-positive cells and the tropism of CMV for stem/progenitor cells. This suggests that the large spectrum of CMV-induced brain abnormalities is caused not only by tissue destruction but also by the particular vulnerability of stem cells during early brain development. Florid infection of the hippocampus and the olfactory bulb may expose these patients to the risk of neurocognitive and sensorineural handicap even in cases of infection at late stages of gestation.


Development | 2006

The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors.

Abeer El Wakil; Cédric Francius; Annie Wolff; Jocelyne Pleau-Varet; Jeannette Nardelli

Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.


Neurobiology of Disease | 2016

Cellular and molecular introduction to brain development

Xiangning Jiang; Jeannette Nardelli

Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.


Cell Reports | 2014

MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis

Tanay Ghosh; Julieta Aprea; Jeannette Nardelli; Hannes Engel; Christian Selinger; Cédric Mombereau; Thomas Lemonnier; Imane Moutkine; Leslie Schwendimann; Martina Dori; Theano Irinopoulou; Alexandra Henrion-Caude; Arndt Benecke; Sebastian J. Arnold; Pierre Gressens; Federico Calegari; Matthias Groszer

Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders.


Stem Cells | 2009

Zinc Finger Protein 191 (ZNF191/Zfp191) Is Necessary to Maintain Neural Cells As Cycling Progenitors

Olfa Khalfallah; Philippe Ravassard; Che Serguera Lagache; Cécile Fligny; Angéline Serre; Elisa Bayard; Nicole Faucon-Biguet; Jacques Mallet; R. Meloni; Jeannette Nardelli

The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191 (ZNF/Zfp191), a factor isolated in hematopoietic cell lines, within progenitors of the central nervous system (CNS). ZNF/Zfp191 has been found to be principally expressed in progenitors of the developing CNS of humans and mice. Such an overlap of the expression patterns in addition to the high homology of the protein in mammals suggested that ZNF/Zfp191 exerts a conserved function within such progenitors. Indeed, ZNF191 knockdown in human neural progenitors inhibits proliferation and leads to the exit of the cell cycle. Conversely, ZNF191 misexpression maintains progenitors in cycle and exerts negative control on the Notch pathway, which prevents them from differentiating. The present data, together with the fact that the inactivation of Zfp191 leads to embryonic lethality, confirm ZNF191 as an essential factor acting for the promotion of the cell cycle and thus maintenance in the progenitor stage. On the bases of expression data, such a function can be extended to progenitor cells of other tissues such as the hematopoietic system, which emphasizes the important issue of further understanding the molecular events controlled by ZNF/Zfp191. STEM CELLS 2009;27:1643–1653


Journal of Clinical Investigation | 2011

VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling

Sandrine Passemard; Vincent El Ghouzzi; Hala Nasser; Catherine Verney; Guilan Vodjdani; Adrien Lacaud; Sophie Lebon; Marc Laburthe; Patrick Robberecht; Jeannette Nardelli; Shyamala Mani; Alain Verloes; Pierre Gressens; Vincent Lelievre

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.


Frontiers in Cellular Neuroscience | 2015

MCPH1: a window into brain development and evolution

Jeremy N. Pulvers; Nathalie Journiac; Yoko Arai; Jeannette Nardelli

The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.


Cerebral Cortex | 2018

Hippocampal Radial Glial Subtypes and Their Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults

Sara Cipriani; Isidre Ferrer; Eleonora Aronica; Gabor G. Kovacs; Catherine Verney; Jeannette Nardelli; Suonavy Khung; Anne-Lise Delezoide; Ivan Milenkovic; Sowmyalakshmi Rasika; Philippe Manivet; Jean-Louis Bénifla; Nicolas Deriot; Pierre Gressens; Homa Adle-Biassette

Neuropathological conditions might affect adult granulogenesis in the adult human dentate gyrus. However, radial glial cells (RGCs) have not been well characterized during human development and aging. We have previously described progenitor and neuronal layer establishment in the hippocampal pyramidal layer and dentate gyrus from embryonic life until mid-gestation. Here, we describe RGC subtypes in the hippocampus from 13 gestational weeks (GW) to mid-gestation and characterize their evolution and the dynamics of neurogenesis from mid-gestation to adulthood in normal and Alzheimers disease (AD) subjects. In the pyramidal ventricular zone (VZ), RGC density declined with neurogenesis from mid-gestation until the perinatal period. In the dentate area, morphologic and antigenic differences among RGCs were observed from early ages of development to adulthood. Density and proliferative capacity of dentate RGCs as well as neurogenesis were strongly reduced during childhood until 5 years, few DCX+ cells are seen in adults. The dentate gyrus of both control and AD individuals showed Nestin+ and/or GFAPδ+ cells displaying different morphologies. In conclusion, pools of morphologically, antigenically, and topographically diverse neural progenitor cells are present in the human hippocampus from early developmental stages until adulthood, including in AD patients, while their neurogenic potential seems negligible in the adult.

Collaboration


Dive into the Jeannette Nardelli's collaboration.

Top Co-Authors

Avatar

Patrick Charnay

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric Francius

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Toby J. Gibson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Abeer El Wakil

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Adrien Lacaud

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Bessières

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge