Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeannine R. LaRocque is active.

Publication


Featured researches published by Jeannine R. LaRocque.


Molecular Cell | 2009

Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination

Sabrina L. Andersen; Daniel T. Bergstralh; Kathryn P. Kohl; Jeannine R. LaRocque; Chris B. Moore; Jeff Sekelsky

DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts.


Molecular and Cellular Biology | 2010

Mechanisms of Recombination between Diverged Sequences in Wild-Type and BLM-Deficient Mouse and Human Cells

Jeannine R. LaRocque; Maria Jasin

ABSTRACT Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ≤100 bp, even in Msh2−/− cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.


Genetics | 2006

Drosophila ATR in Double-Strand Break Repair

Jeannine R. LaRocque; Burnley Jaklevic; Tin Tin Su; Jeff Sekelsky

The ability of a cell to sense and respond to DNA damage is essential for genome stability. An important aspect of the response is arrest of the cell cycle, presumably to allow time for repair. Ataxia telangiectasia mutated (ATM) and ATR are essential for such cell-cycle control, but some observations suggest that they also play a direct role in DNA repair. The Drosophila ortholog of ATR, MEI-41, mediates the DNA damage-dependent G2-M checkpoint. We examined the role of MEI-41 in repair of double-strand breaks (DSBs) induced by P-element excision. We found that mei-41 mutants are defective in completing the later steps of homologous recombination repair, but have no defects in end-joining repair. We hypothesized that these repair defects are the result of loss of checkpoint control. To test this, we genetically reduced mitotic cyclin levels and also examined repair in grp (DmChk1) and lok (DmChk2) mutants. Our results suggest that a significant component of the repair defects is due to loss of MEI-41-dependent cell cycle regulation. However, this does not account for all of the defects we observed. We propose a novel role for MEI-41 in DSB repair, independent of the Chk1/Chk2-mediated checkpoint response.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells

Jeannine R. LaRocque; Jeremy M. Stark; Jin Oh; Ekaterina Bojilova; Kosuke Yusa; Kyoji Horie; Junji Takeda; Maria Jasin

Genomic integrity often is compromised in tumor cells, as illustrated by genetic alterations leading to loss of heterozygosity (LOH). One mechanism of LOH is mitotic crossover recombination between homologous chromosomes, potentially initiated by a double-strand break (DSB). To examine LOH associated with DSB-induced interhomolog recombination, we analyzed recombination events using a reporter in mouse embryonic stem cells derived from F1 hybrid embryos. In this study, we were able to identify LOH events although they occur only rarely in wild-type cells (≤2.5%). The low frequency of LOH during interhomolog recombination suggests that crossing over is rare in wild-type cells. Candidate factors that may suppress crossovers include the RecQ helicase deficient in Bloom syndrome cells (BLM), which is part of a complex that dissolves recombination intermediates. We analyzed interhomolog recombination in BLM-deficient cells and found that, although interhomolog recombination is slightly decreased in the absence of BLM, LOH is increased by fivefold or more, implying significantly increased interhomolog crossing over. These events frequently are associated with a second homologous recombination event, which may be related to the mitotic bivalent structure and/or the cell-cycle stage at which the initiating DSB occurs.


DNA Repair | 2012

RECQ1 plays a distinct role in cellular response to oxidative DNA damage

Sudha Sharma; Pornima Phatak; Alexei Stortchevoi; Maria Jasin; Jeannine R. LaRocque

RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H₂O₂treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.


Genes & Development | 2016

A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

Aniek Janssen; Gregory A. Breuer; Eva K. Brinkman; Annelot I. van der Meulen; Sean V. Borden; Bas van Steensel; Ranjit S. Bindra; Jeannine R. LaRocque; Gary H. Karpen

Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context.Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.


Methods | 2014

Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system

Yu Zhang; Fabio Vanoli; Jeannine R. LaRocque; Przemek M. Krawczyk; Maria Jasin

Gene targeting - homologous recombination between transfected DNA and a chromosomal locus - is greatly stimulated by a DNA break in the target locus. Recently, the RNA-guided Cas9 endonuclease, involved in bacterial adaptive immunity, has been modified to function in mammalian cells. Unlike other site-specific endonucleases whose specificity resides within a protein, the specificity of Cas9-mediated DNA cleavage is determined by a guide RNA (gRNA) containing an ∼20 nucleotide locus-specific RNA sequence, representing a major advance for versatile site-specific cleavage of the genome without protein engineering. This article provides a detailed method using the Cas9 system to target expressed genes in mouse embryonic stem cells. In this method, a promoterless marker flanked by short homology arms to the target locus is transfected into cells together with Cas9 and gRNA expression vectors. Importantly, biallelic gene knockout is obtained at high frequency by only one round of targeting using a single marker.


Oncotarget | 2016

Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair

Michael P. Croglio; Jefferson M. Haake; Colin P. Ryan; Victor S. Wang; Jennifer Lapier; Jamie P. Schlarbaum; Yaron Dayani; Emma Artuso; Cristina Prandi; Hinanit Koltai; Keli Agama; Yves Pommier; Yu Chen; Lucas Tricoli; Jeannine R. LaRocque; Christopher Albanese; Ronit I. Yarden

Strigolactones are a novel class of plant hormones produced in roots that regulate shoot and root development. We previously reported that strigolactone analogs (SLs) induce G2/M cell cycle arrest and apoptosis in a variety of human cancer cells and inhibit tumor growth of human breast cancer xenografts in mice. SLs had no significant influences on non-transformed cells. Here we report for the first time that SLs induce DNA damage in the form of DNA double-strand breaks (DSBs) and activate the DNA damage response signaling by inducing phosphorylation of ATM, ATR and DNA-PKcs and co-localization of the DNA damage signaling protein, 53BP1, with γH2AX nuclear foci. We further report that in addition to DSBs induction, SLs simultaneously impair DSBs repair, mostly homology-directed repair (HDR) and to a lesser extent non-homologous end joining (NHEJ). In response to SLs, RAD51, the homologous DSB repair protein, is ubiquitinated and targeted for proteasomal degradation and it fails to co-localize with γH2AX foci. Interestingly, SLs synergize with DNA damaging agents-based therapeutics. The combination of PARP inhibitors and SLs showed an especially potent synergy, but only in BRCA1-proficient cells. No synergy was observed between SLs and PARP inhibitors in BRCA1-deficient cells, supporting a role for SLs in HDR impairment. Together, our data suggest that SLs increase genome instability and cell death by a unique mechanism of inducing DNA damage and inhibiting DNA repair.


G3: Genes, Genomes, Genetics | 2014

Double-Strand Break Repair Assays Determine Pathway Choice and Structure of Gene Conversion Events in Drosophila melanogaster

Anthony T. Do; Joseph T. Brooks; Margot K. Le Neveu; Jeannine R. LaRocque

Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to determine the contributions of these repair pathways and to finely resolve repair event structures in Drosophila melanogaster. Rad51-dependent homologous recombination is the preferred DSB repair pathway in mitotically dividing cells, and the pathway choice between HR and SSA occurs after end resection and before Rad51-dependent strand invasion. HR events are associated with long gene conversion tracts and are both bidirectional and unidirectional, consistent with repair via the synthesis-dependent strand annealing pathway. Additionally, HR between diverged sequences is suppressed in Drosophila, similar to levels reported in human cells. Junction analyses of rare NHEJ events reveal that canonical NHEJ is utilized in this system.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations

Aisa Sakaguchi; Peter Sarkies; Matt Simon; Anna-Lisa Doebley; Leonard D. Goldstein; Ashley Hedges; Kohta Ikegami; Stacy M. Alvares; Liwei Yang; Jeannine R. LaRocque; Julie Hall; Eric A. Miska; Shawn Ahmed

Significance Here, we establish a role for small RNAs in promoting transgenerational fertility via an endogenous temperature-sensitive silencing process that is promoted by the RNAi spreading defective (RSD)-2 and RSD-6 proteins, which have been implicated in RNA interference in response to exogenous double-stranded RNA triggers. This process could be broadly relevant to transgenerational maintenance of heterochromatin and is plausibly relevant to regulation of aging of somatic cells as they proliferate. Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing.

Collaboration


Dive into the Jeannine R. LaRocque's collaboration.

Top Co-Authors

Avatar

Maria Jasin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeff Sekelsky

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anthony T. Do

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henry A. Ertl

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph T. Brooks

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yu Zhang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aniek Janssen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anna-Lisa Doebley

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge