Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jed A. Hartings is active.

Publication


Featured researches published by Jed A. Hartings.


Journal of Cerebral Blood Flow and Metabolism | 2011

Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

Martin Lauritzen; Jens P. Dreier; Martin Fabricius; Jed A. Hartings; Rudolf Graf; Anthony J. Strong

Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.


Brain | 2009

Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage

Jens P. Dreier; Sebastian Major; Andrew Manning; Johannes Woitzik; Chistoph Drenckhahn; Jens Steinbrink; Christos M. Tolias; Ana I Oliveira-Ferreira; Martin Fabricius; Jed A. Hartings; Peter Vajkoczy; Martin Lauritzen; Ulrich Dirnagl; Georg Bohner; Anthony J. Strong

The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO2). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brains resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel ‘functional marker’ for progressive ischaemia.


Lancet Neurology | 2011

Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study

Jed A. Hartings; M. Ross Bullock; David O. Okonkwo; Lilian S. Murray; Gordon Murray; Martin Fabricius; Andrew I.R. Maas; Johannes Woitzik; Oliver W. Sakowitz; Bruce E. Mathern; Bob Roozenbeek; Hester F. Lingsma; Jens P. Dreier; Ava M. Puccio; Lori Shutter; Clemens Pahl; Anthony J. Strong

BACKGROUND Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable neurological outcome. METHODS We did a prospective, observational, multicentre study at seven neurological centres. We enrolled 109 adults who needed neurosurgery for acute TBI. Spreading depolarisations were monitored by electrocorticography during intensive care and were classified as cortical spreading depression (CSD) if they took place in spontaneously active cortex or as isoelectric spreading depolarisation (ISD) if they took place in isoelectric cortex. Investigators who treated patients and assessed outcome were masked to electrocorticographic results. Scores on the extended Glasgow outcome scale at 6 months were fitted to a multivariate model by ordinal regression. Prognostic score (based on variables at admission, as validated by the IMPACT studies) and spreading depolarisation category (none, CSD only, or at least one ISD) were assessed as outcome predictors. FINDINGS Six individuals were excluded because of poor-quality electrocorticography. A total of 1328 spreading depolarisations arose in 58 (56%) patients. In 38 participants, all spreading depolarisations were classified as CSD; 20 patients had at least one ISD. By multivariate analysis, both prognostic score (p=0·0009) and spreading depolarisation category (p=0·0008) were significant predictors of neurological outcome. CSD and ISD were associated with an increased risk of unfavourable outcome (common odds ratios 1·56 [95% CI 0·72-3·37] and 7·58 [2·64-21·8], respectively). Addition of depolarisation category to the regression model increased the proportion of variance in outcome that could be attributed to predictors from 9% to 22%, compared with the prognostic score alone. INTERPRETATION Spreading depolarisations were associated with unfavourable outcome, after controlling for conventional prognostic variables. The possibility that spreading depolarisations have adverse effects on the traumatically injured brain, and therefore might be a target in the treatment of TBI, deserves further research. FUNDING US Army CDMRP PH/TBI research programme.


Clinical Neurophysiology | 2008

Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain

Martin Fabricius; Susanne Fuhr; Lisette Willumsen; Jens P. Dreier; Robin Bhatia; Martyn G. Boutelle; Jed A. Hartings; Ross Bullock; Anthony J. Strong; Martin Lauritzen

OBJECTIVE To test the co-occurrence and interrelation of ictal activity and cortical spreading depressions (CSDs) - including the related periinfarct depolarisations in acute brain injury caused by trauma, and spontaneous subarachnoid and/or intracerebral haemorrhage. METHODS 63 patients underwent craniotomy and electrocorticographic (ECoG) recordings were taken near foci of damaged cortical tissue for up to 10 days. RESULTS 32 of 63 patients exhibited CSDs (5-75 episodes) and 11 had ECoGraphic seizure activity (1-81 episodes). Occurrence of seizures was significantly associated with CSD, as 10 of 11 patients with seizures also had CSD (p=0.007, 2-tailed Fishers exact test). Clinically overt seizures were only observed in one patient. Each patient with CSD and seizures displayed one of four different patterns of interaction between CSD and seizures. In four patients CSD was immediately preceded by prolonged seizure activity. In three patients the two phenomena were separated in time: multiple CSDs were replaced by ictal activity. In one patient seizures appeared to trigger repeated CSDs at the adjacent electrode. In 2 patients ongoing repeated seizures were interrupted each time CSD occurred. CONCLUSIONS Seizure activity occurs in association with CSD in the injured human brain. SIGNIFICANCE ECoG recordings in brain injury patients provide insight into pathophysiological mechanisms, which are not accessible by scalp EEG recordings.


Brain | 2011

Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

Jed A. Hartings; Tomas Watanabe; M. Ross Bullock; David O. Okonkwo; Martin Fabricius; Johannes Woitzik; Jens P. Dreier; Ava M. Puccio; Lori Shutter; Clemens Pahl; Anthony J. Strong

Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown, although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10 exhibited spreading depolarizations in an electrophysiologic penumbra (i.e. isoelectric cortex with no spontaneous activity). All 10 patients (100%) with isoelectric spreading depolarizations had poor outcomes, defined as death, vegetative state, or severe disability at 6 months. In contrast, poor outcomes were observed in 60% of patients (12/20) who had spreading depolarizations with depression of spontaneous activity and only 26% of patients (6/23) who had no depolarizations (χ2, P<0.001). Spontaneous electrocorticographic activity and direct current shifts of depolarizations were further examined in nine patients. Direct current shift durations (n=295) were distributed with a significant positive skew (range 0:51-16:19 min:s), evidencing a normally distributed group of short events and a sub-group of prolonged events. Prolonged direct current shifts were more commonly associated with isoelectric depolarizations (median 2 min 36 s), whereas shorter depolarizations occurred with depression of spontaneous activity (median 2 min 10 s; P<0.001). In the latter group, direct current shift durations correlated with electrocorticographic depression periods, and were longer when preceded by periodic epileptiform discharges than by continuous delta (0.5-4.0 Hz) or higher frequency activity. Prolonged direct current shifts (>3 min) also occurred mainly within temporal clusters of events. Our results show for the first time that spreading depolarizations are associated with worse clinical outcome after traumatic brain injury. Furthermore, based on animal models of brain injury, the prolonged durations of depolarizations raise the possibility that these events may contribute to maturation of cortical lesions. Prolonged depolarizations, measured by negative direct current shifts, were associated with (i) isoelectricity or periodic epileptiform discharges; (ii) prolonged depression of spontaneous activity and (iii) occurrence in temporal clusters. Depolarizations with these characteristics are likely to reflect a worse prognosis.


Brain | 2012

Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

Jens P. Dreier; Sebastian Major; Heinz-Wolfgang Pannek; Johannes Woitzik; Michael Scheel; Dirk Wiesenthal; Peter Martus; Maren K.L. Winkler; Jed A. Hartings; Martin Fabricius; Erwin-Josef Speckmann; Ali Gorji

Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression periods per 24 h recording episodes showed an early and a delayed peak on Day 7. Patients surviving subarachnoid haemorrhage with poor outcome at 6 months showed significantly higher total and peak numbers of spreading depolarizations and significantly longer total and peak depression periods during the electrocorticographic monitoring than patients with good outcome. In a semi-structured telephone interview 3 years after the initial haemorrhage, 44% of the subarachnoid haemorrhage survivors had developed late post-haemorrhagic seizures requiring anti-convulsant medication. In those patients, peak spreading depolarization number had been significantly higher [15.1 (11.4–30.8) versus 7.0 (0.8–11.2) events per day, P = 0.045]. In summary, monopolar recordings here provided unequivocal evidence of spreading convulsions in patients. Hence, practically all major pathological cortical network events in animals have now been observed in people. Early spreading depolarizations may indicate a risk for late post-haemorrhagic seizures.


Journal of Neuroscience Research | 2004

Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion.

X.-C. May Lu; Anthony J. Williams; Changping Yao; Rossana Berti; Jed A. Hartings; Rebecca Whipple; Maryanne Vahey; Ratna G. Polavarapu; Kimberly L. Woller; Frank C. Tortella; Jitendra R. Dave

Temporal changes in gene expression were measured using DNA microarrays after 30‐min or 2‐hr transient middle cerebral artery occlusion (MCAo) in rats. Total RNA was extracted from the injured hemisphere at 30 min, 4 hr, 8 hr, 24 hr, 3 days, and 7 days after MCAo for GeneChip analysis using Affymetrix U34 Rat Neurobiology arrays (1,322 functional genes). In total, 267 genes were expressed differentially: 166 genes were upregulated, 94 genes were downregulated, and 7 genes were biphasically up‐ and downregulated. Among all differentially expressed genes, 88 were newly identified as associated with ischemic brain injury. Most affected genes were distributed among 12 functional categories. Immediate early genes, transcription factors, and heat shock proteins were upregulated as early as 30 min after MCAo, followed by the upregulation of inflammation, apoptosis, cytoskeletal, and metabolism genes, which peaked within 4–24 hr of injury. Neurotrophic growth factors exhibited a sustained upregulation beginning 24 hr after MCAo and persisting through 7 days post‐injury. Three classes of genes were downregulated with distinct temporal patterns: ion channel genes and neurotransmitter receptor genes were downregulated between 8–24 hr after injury, whereas synaptic proteins genes were downregulated between 3–7 days after MCAo. Downregulation of synaptic protein gene expression after ischemic injury is of particular interest because of its conspicuously delayed pattern as a functional group, which has not been reported previously and may play a role in post‐injury recovery.


Experimental Neurology | 2003

Occurrence of nonconvulsive seizures, periodic epileptiform discharges, and intermittent rhythmic delta activity in rat focal ischemia.

Jed A. Hartings; Anthony J. Williams; Frank C. Tortella

A significant proportion of neurologic patients suffer electroencephalographic (EEG) seizures in the acute phase following traumatic or ischemic brain injury, including many without overt behavioral manifestations. Although such nonconvulsive seizures may exacerbate neuropathological processes, they have received limited attention clinically and experimentally. Here we characterize seizure episodes following focal cerebral ischemia in the rat as a model for brain injury-induced seizures. Cortical EEG activity was recorded continuously from both hemispheres up to 72 h following middle cerebral artery occlusion (MCAo). Seizure discharges appeared in EEG recordings within 1 h of MCAo in 13/16 (81%) animals and consisted predominantly of generalized 1-3 Hz rhythmic spiking. During seizures animals engaged in quiet awake or normal motor behaviors, but exhibited no motor convulsant activity. Animals had a mean of 10.6 seizure episodes within 2 h, with a mean duration of 60 s per episode. On average, seizures ceased at 1 h 59 min post-MCAo in permanently occluded animals and did not occur following reperfusion at 2 h in transiently occluded animals. In addition to seizures, periodic lateralized epileptiform discharges (PLEDs) appeared over penumbral regions in the injured hemisphere while intermittent rhythmic delta activity (IRDA) recurred in the contralateral hemisphere with frontoparietal dominance. PLEDs and IRDA persisted up to 72 h in permanent MCAo animals, and early onset of the former was predictive of prolonged seizure activity. The presentation of these EEG waveforms, each with characteristic features replicating those in clinical neurologic populations, validates rat MCAo for study of acutely induced brain seizures and other neurophysiological aspects of brain injury.


Brain | 2012

Correlates of spreading depolarization in human scalp electroencephalography

Christoph Drenckhahn; Maren K.L. Winkler; Sebastian Major; Michael Scheel; Eun-Jeung Kang; Alexandra Pinczolits; Cristian Grozea; Jed A. Hartings; Johannes Woitzik; Jens P. Dreier

It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection.


Journal of Cerebral Blood Flow and Metabolism | 2010

Experimental and preliminary clinical evidence of an ischemic zone with prolonged negative DC shifts surrounded by a normally perfused tissue belt with persistent electrocorticographic depression

Ana I Oliveira-Ferreira; Denny Milakara; Mesbah Alam; Devi Jorks; Sebastian Major; Jed A. Hartings; Janos Lückl; Peter Martus; Rudolf Graf; Christian Dohmen; Georg Bohner; Johannes Woitzik; Jens P. Dreier

In human cortex it has been suggested that the tissue at risk is indicated by clusters of spreading depolarizations (SDs) with persistent depression of high-frequency electrocorticographic (ECoG) activity. We here characterized this zone in the ET-1 model in rats using direct current (DC)-ECoG recordings. Topical application of the vasoconstrictor endothelin-1 (ET-1) induces focal ischemia in a concentration-dependent manner restricted to a region exposed by a cranial window, while a healthy cortex can be studied at a second naïve window. SDs originate in the ET-1-exposed cortex and invade the surrounding tissue. Necrosis is restricted to the ET-1-exposed cortex. In this study, we discovered that persistent depression occurred in both ET-1-exposed and surrounding cortex during SD clusters. However, the ET-1-exposed cortex showed longer-lasting negative DC shifts and limited high-frequency ECoG recovery after the cluster. DC-ECoG recordings of SD clusters with persistent depression from patients with aneurysmal subarachnoid hemorrhage were then analyzed for comparison. Limited ECoG recovery was associated with significantly longer-lasting negative DC shifts in a similar manner to the experimental model. These preliminary results suggest that the ischemic zone in rat and human cortex is surrounded by a normally perfused belt with persistently reduced synaptic activity during the acute injury phase.

Collaboration


Dive into the Jed A. Hartings's collaboration.

Top Co-Authors

Avatar

Frank C. Tortella

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunyan Li

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Raj K. Narayan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Chong H. Ahn

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Zhizhen Wu

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge