Jed I. Ziegler
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jed I. Ziegler.
Nano Letters | 2010
Jed I. Ziegler; Richard F. Haglund
The Archimedean spiral geometry presents a platform for exploration of complex plasmonic mechanisms and applications. Here we show both through simulations and experiment that more complex plasmonic modes with unique near-field structure and larger mode volumes can be realized within a single, topologically robust structure. In the spiral, complex polarization response, resonant interactions and symmetry-breaking features are defined by the width and spacing of the spiral tracks and by the winding number of the spiral.
Scientific Reports | 2015
Yohannes Abate; Robert E. Marvel; Jed I. Ziegler; Sampath Gamage; M. Javani; Mark I. Stockman; Richard F. Haglund
We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics.
Nanophotonics | 2015
Roderick B. Davidson; Jed I. Ziegler; Guillermo Vargas; Sergey M. Avanesyan; Yu Gong; Wayne P. Hess; Richard F. Haglund
Abstract: The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.
Nanophotonics | 2017
Jed I. Ziegler; Marcel W. Pruessner; Blake S. Simpkins; Dmitry A. Kozak; D. Park; Fredrik K. Fatemi; Todd H. Stievater
Abstract Highly evanescent waveguides with a subwavelength core thickness present a promising lab-on-chip solution for generating nanovolume trapping sites using overlapping evanescent fields. In this work, we experimentally studied Si3N4 waveguides whose sub-wavelength cross-sections and high aspect ratios support fundamental and higher order modes at a single excitation wavelength. Due to differing modal effective indices, these co-propagating modes interfere and generate beating patterns with significant evanescent field intensity. Using near-field scanning optical microscopy (NSOM), we map the structure of these beating modes in three dimensions. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices. By reducing the in-plane width, the population of competing modes decreases, resulting in a simplified spectrum of beating modes, such that waveguides with a width of 650 nm support three modes with two observed beats. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices.
conference on lasers and electro optics | 2015
Roderick B. Davidson; Anna Yanchenko; Jed I. Ziegler; Sergey M. Avanesyan; Richard F. Haglund
Interferometric pump-probe spectroscopy is used to demonstrate all-optical second-harmonic generation from a polymer dielectric in a serrated nanogap structure. Strong optical frequency electric-fields from surface plasmons create ultrafast controllable nonlinear light pulses.
Nanophotonics | 2015
Roderick B. Davidson; Jed I. Ziegler; Guillermo Vargas; Sergey M. Avanesyan; Yu Gong; Wayne P. Hess; Richard F. Haglund
Abstract: The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.
Nanophotonics | 2015
Roderick B. Davidson; Jed I. Ziegler; Guillermo Vargas; Sergey M. Avanesyan; Yu Gong; Wayne P. Hess; Richard F. Haglund
Abstract: The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.
Proceedings of SPIE | 2009
Jed I. Ziegler; Joyeeta Nag; Richard F. Haglund
Gold/vanadium dioxide nanoparticles (NPs) were produced with the intention of creating a hybrid NP retaining the characteristic semiconductor-metal phase transition of VO2 and the plasmonic properties of gold. The fabrication procedure for arrays of the hybrid structure is presented with optical characterization and analysis of the plasmonic structure. The high-temperature anneal required to insure the stoichiometry of the VO2 leads to dewetting of the Au from the underlying VO2 layer, and to dramatic reshaping of the gold NP. Surface enhanced Raman spectroscopy verifies the retention of the VO2 crystalline structure and phase transition; white light extinction measurements exhibit the polarization sensitive plasmonic resonance peaks that characterize the electronic signature of the phase transition. Together these techniques show that the composite system experiences no significant intermingling between the two materials during processing. Furthermore, the controllable nature of the extent of dewetting, via aspect ratio of the pre-annealed particle, suggests that the hybrid system will give insight into interface interactions between the optical and structural properties of the constituents. A second method is suggested to circumvent the annealing effect. The conclusions of our investigation suggest applications as both a thermally or optically tunable plasmonic structure.
Nano Letters | 2013
Hiram J. Conley; Bin Wang; Jed I. Ziegler; Richard F. Haglund; Sokrates T. Pantelides; Kirill Bolotin
Solid State Communications | 2013
A.K.M. Newaz; Dhiraj Prasai; Jed I. Ziegler; D. Caudel; S. Robinson; Richard F. Haglund; Kirill Bolotin