Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jedediah F. Brodie is active.

Publication


Featured researches published by Jedediah F. Brodie.


Science | 2013

Ecological Consequences of Sea-Ice Decline

Eric Post; Uma S. Bhatt; Cecilia M. Bitz; Jedediah F. Brodie; Tara L. Fulton; Mark Hebblewhite; Jeffrey T. Kerby; Susan J. Kutz; Ian Stirling; Donald A. Walker

After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.


Ecological Applications | 2009

Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree

Jedediah F. Brodie; Olga E. Helmy; Warren Y. Brockelman; John L. Maron

Myriad tropical vertebrates are threatened by overharvest. Whether this harvest has indirect effects on nonhunted organisms that interact with the game species is a critical question. Many tropical birds and mammals disperse seeds. Their overhunting in forests can cause zoochorous trees to suffer from reduced seed dispersal. Yet how these reductions in seed dispersal influence tree abundance and population dynamics remains unclear. Reproductive parameters in long-lived organisms often have very low elasticities; indeed the demographic importance of seed dispersal is an open question. We asked how variation in hunting pressure across four national parks with seasonal forest in northern Thailand influenced the relative abundance of gibbons, muntjac deer, and sambar deer, the sole dispersers of seeds of the canopy tree Choerospondias axillaris. We quantified how variation in disperser numbers affected C. axillaris seed dispersal and seedling abundance across the four parks. We then used these data in a structured population model based on vital rates measured in Khao Yai National Park (where poaching pressure is minimal) to explore how variation in illegal hunting pressure might influence C. axillaris population growth and persistence. Densities of the mammals varied strongly across the parks, from relatively high in Khao Yai to essentially zero in Doi Suthep-Pui. Levels of C. axillaris seed dispersal and seedling abundance positively tracked mammal density. If hunting in Khao Yai were to increase to the levels seen in the other parks, C. axillaris population growth rate would decline, but only slightly. Extinction of C. axillaris is a real possibility, but may take many decades. Recent and ongoing extirpations of vertebrates in many tropical forests could be creating an extinction debt for zoochorous trees whose vulnerability is belied by their current abundance.


Trends in Ecology and Evolution | 2012

Climate change and tropical biodiversity: a new focus

Jedediah F. Brodie; Eric Post; William F. Laurance

Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate-land use interactions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest-carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.


Ecology | 2009

Functional differences within a guild of tropical mammalian frugivores

Jedediah F. Brodie; Olga E. Helmy; Warren Y. Brockelman; John L. Maron

Many plants interact with groups of mutualist pollinators and seed dispersers. A key issue for both basic ecology and conservation is whether the different species within these guilds of mutualist animals are functionally equivalent. Comparing the relative effects of sympatric mutualists is important for understanding the evolution of multispecies mutualisms and for predicting mutualism stability in the face of anthropogenic change. However, empirical comparisons of the population-level impacts of mutualist animals on their host plant are rare, particularly for seed dispersal mutualisms in species-rich ecosystems. We compared the influence of three seed-dispersing tropical mammals, lar gibbons (Hylobates lar), sambar deer (Rusa unicolor), and red muntjac deer (Muntiacus muntjak), on the demography of a shared host tree in Thailand, Choerospondias axillaris (Anacardiaceae). Sambar and muntjac dispersed far more C. axillaris seeds than did gibbons. While sambar deposited many seeds under female tree canopies, muntjac were the only disperser to move seeds to open microhabitats, where C. axillaris seed germination, seedling survival, and initial growth are enhanced. Using stage-based population models, we assessed how disperser-specific seed dispersal, variation in the frequency of canopy gap formation, and their interaction influenced the potential population growth of C. axillaris. Large differences in dispersal quantity and small differences in dispersal quality among sambar and gibbons resulted in similar and negligible impacts on the trees population dynamics. Muntjac, by taking some of the seeds to open microhabitats, are projected to have a greater positive impact on C. axillaris demography than either sambar or gibbons. Model comparisons of population-level species impacts may allow us to predict which ecological interactions are at risk from loss of critical species.


Biodiversity and Conservation | 2009

Is research effort allocated efficiently for conservation? Felidae as a global case study

Jedediah F. Brodie

Some species face greater anthropogenic threats than others, and have increased need for scarce conservation resources. Yet how resources are allocated for conservation remains little known. I examined the distribution of research effort, an index of resource allocation, across Felidae (the cat family), a diverse, widely-distributed, and threatened taxon. I performed complete searches of the published literature for all cat species from 1986 to 2007, collecting a total of 2,462 papers, of which 926 represented in situ studies. Threat status, as ranked by a World Conservation Union report in 1996, was significantly correlated with geographical range size, with narrowly distributed species tending to be more at risk. Unlike in many other taxa, threat status was not correlated with body size. The number of total and in situ publications (“research effort”) per species was significantly and positively related to body size, but not to threat status or geographical range size. Research effort, rather than being distributed according to actual threat status, is highly skewed towards large species. However, the ratio of the number of studies on the 10 smallest cat species to the number on the 10 largest species has increased significantly since 1986. Yet many species remain severely understudied; I identify 14 cat species that are threatened and have <10 in situ publications each. These species critically require a greater share of the conservation research effort.


Conservation Biology | 2015

Correlation and persistence of hunting and logging impacts on tropical rainforest mammals.

Jedediah F. Brodie; Anthony J. Giordano; Elise F. Zipkin; Henry Bernard; Jayasilan Mohd-Azlan; Laurentius Ambu

Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium- to large-bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old-growth forest. Hunting was a more serious long-term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species-specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earths most biodiverse ecosystems.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Climate change intensification of herbivore impacts on tree recruitment

Jedediah F. Brodie; Eric Post; Fred G.R. Watson; Joel Berger

Altered species interactions are difficult to predict and yet may drive the response of ecological communities to climate change. We show that declining snowpack strengthens the impacts of a generalist herbivore, elk (Cervus elaphus), on a common tree species. Thick snowpack substantially reduces elk visitation to sites; aspen (Populus tremuloides) shoots in these areas experience lower browsing rates, higher survival and enhanced recruitment. Aspen inside herbivore exclosures have greatly increased recruitment, particularly at sites with thick snowpack. We suggest that long-term decreases in snowpack could help explain a widespread decline of aspen through previously unconsidered relationships. More generally, reduced snowpack across the Rocky Mountains, combined with rising elk populations, may remove the conditions needed for recruitment of this ecologically important tree species. These results highlight that herbivore behavioural responses to altered abiotic conditions are critical determinants of plant persistence. Predictions of climate change impacts must not overlook the crucial importance of species interactions.


Journal of Applied Ecology | 2013

Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

Jedediah F. Brodie; Heather E. Johnson; Michael S. Mitchell; Peter Zager; Kelly M. Proffitt; Mark Hebblewhite; Matthew J. Kauffman; Bruce K. Johnson; John A. Bissonette; Chad J. Bishop; Justin A. Gude; Jeff Herbert; Kent R. Hersey; Mark A. Hurley; Paul M. Lukacs; Scott McCorquodale; Eliot J. B. McIntire; Josh Nowak; Hall Sawyer; Douglas W. Smith; P. J. White

Summary 1. Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. 2. Proportional hazard analysis revealed that ‘baseline’ (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. 3. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores.


Oryx | 2012

Density of the Vulnerable Sunda clouded leopard Neofelis diardi in a protected area in Sabah, Malaysian Borneo

Jedediah F. Brodie; Anthony J. Giordano

Population density is an important parameter for monitoring and guiding conservation of small or threatened wildlife populations. Yet, despite the Vulnerable status of both species of clouded leopard Neofelis spp., and their disappearing tropical forest habitat, information on their population density is lacking from across their broad geographic ranges. Here we estimated population density of the Sunda clouded leopard N. diardi in the Maliau Basin Conservation Area in Sabah, Malaysian Borneo, one of the first such estimates for either species of clouded leopard. With 25 camera-trap stations, each operated for at least 81 trap-nights, we obtained 59 detections of four individual Sunda clouded leopards in undisturbed primary rainforest but only a single detection in logged forest, despite similar sampling effort. Using spatially-explicit mark–recapture models, we estimated a density of 1.9 individuals per 100 km 2 (95% confidence interval 0.7–5.4) for primary forest and 0.8 per 100 km 2 (0.2–2.6) for the entire study area (including logged forest). These results will contribute to a better understanding of clouded leopard status and serve as a reference for future assessments of the species.


Conservation Biology | 2016

Impacts of hunting on tropical forests in Southeast Asia

Rhett D. Harrison; Rachakonda Sreekar; Jedediah F. Brodie; Sarah Brook; Matthew Scott Luskin; Hannah J. O'Kelly; Madhu Rao; Brett R. Scheffers; Nandini Velho

Although deforestation and forest degradation have long been considered the most significant threats to tropical biodiversity, across Southeast Asia (Northeast India, Indochina, Sundaland, Philippines) substantial areas of natural habitat have few wild animals (>1 kg), bar a few hunting-tolerant species. To document hunting impacts on vertebrate populations regionally, we conducted an extensive literature review, including papers in local journals and reports of governmental and nongovernmental agencies. Evidence from multiple sites indicated animal populations declined precipitously across the region since approximately 1980, and many species are now extirpated from substantial portions of their former ranges. Hunting is by far the greatest immediate threat to the survival of most of the regions endangered vertebrates. Causes of recent overhunting include improved access to forests and markets, improved hunting technology, and escalating demand for wild meat, wildlife-derived medicinal products, and wild animals as pets. Although hunters often take common species, such as pigs or rats, for their own consumption, they take rarer species opportunistically and sell surplus meat and commercially valuable products. There is also widespread targeted hunting of high-value species. Consequently, as currently practiced, hunting cannot be considered sustainable anywhere in the region, and in most places enforcement of protected-area and protected-species legislation is weak. The international communitys focus on cross-border trade fails to address overexploitation of wildlife because hunting and the sale of wild meat is largely a local issue and most of the harvest is consumed in villages, rural towns, and nearby cities. In addition to improved enforcement, efforts to engage hunters and manage wildlife populations through sustainable hunting practices are urgently needed. Unless there is a step change in efforts to reduce wildlife exploitation to sustainable levels, the region will likely lose most of its iconic species, and many others besides, within the next few years.

Collaboration


Dive into the Jedediah F. Brodie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Bernard

Universiti Malaysia Sabah

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Post

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt Heydon

University of Aberdeen

View shared research outputs
Researchain Logo
Decentralizing Knowledge