Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeehye Park is active.

Publication


Featured researches published by Jeehye Park.


Nature | 2006

Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin

Jeehye Park; Sung Bae Lee; S.Y. Lee; Yongsung Kim; Saera Song; Sunhong Kim; Eunkyung Bae; Jaeseob Kim; Minho Shong; Jin-Man Kim; Jongkyeong Chung

Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinsons disease characterized by motor disturbances and dopaminergic neurodegeneration. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1 ), a novel AR-JP-linked gene. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects. Furthermore, transmission electron microscopy analysis and a rescue experiment with Drosophila Bcl-2 demonstrated that mitochondrial dysfunction accounts for the degenerative changes in all phenotypes of PINK1 mutants. Notably, we also found that PINK1 mutants share marked phenotypic similarities with parkin mutants. Transgenic expression of Parkin markedly ameliorated all PINK1 loss-of-function phenotypes, but not vice versa, suggesting that Parkin functions downstream of PINK1. Taken together, our genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.


Biochemical and Biophysical Research Communications | 2008

PINK1 controls mitochondrial localization of Parkin through direct phosphorylation

Yongsung Kim; Jeehye Park; Sunhong Kim; Saera Song; Seok-Kyu Kwon; Sang-Hee Lee; Tohru Kitada; Jin-Man Kim; Jongkyeong Chung

PTEN-induced putative kinase 1 (PINK1) and Parkin, encoded by their respective genes associated with Parkinsons disease (PD), are linked in a common pathway involved in the protection of mitochondrial integrity and function. However, the mechanism of their interaction at the biochemical level has not been investigated yet. Using both mammalian and Drosophila systems, we here demonstrate that the PINK1 kinase activity is required for its function in mitochondria. PINK1 regulates the localization of Parkin to the mitochondria in its kinase activity-dependent manner. In detail, Parkin phosphorylation by PINK1 on its linker region promotes its mitochondrial translocation, and the RING1 domain of Parkin is critical for this occurrence. These results demonstrate the biochemical relationship between PINK1, Parkin, and the mitochondria and thereby suggest the possible mechanism of PINK-Parkin-associated PD pathogenesis.


Biochemical and Biophysical Research Communications | 2009

The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

Jeehye Park; Gina Lee; Jongkyeong Chung

The two Parkinsons disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.


EMBO Reports | 2007

ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase

Sung Bae Lee; Sunhong Kim; Jiwoon Lee; Jeehye Park; Gina Lee; Yongsung Kim; Jin-Man Kim; Jongkyeong Chung

It has been proposed that cell growth and autophagy are coordinated in response to cellular nutrient status, but the relationship between them is not fully understood. Here, we have characterized the fly mutants of Autophagy‐specific gene 1 (ATG1), an autophagy‐regulating kinase, and found that ATG1 is a negative regulator of the target of rapamycin (TOR)/S6 kinase (S6K) pathway. Our Drosophila studies have shown that ATG1 inhibits TOR/S6K‐dependent cell growth and development by interfering with S6K activation. Consistently, overexpression of ATG1 in mammalian cells also markedly inhibits S6K in a kinase activity‐dependent manner, and short interfering RNA‐mediated knockdown of ATG1 induces ectopic activation of S6K and S6 phosphorylation. Moreover, we demonstrated that ATG1 specifically inhibits S6K activity by blocking phosphorylation of S6K at Thr 389. Taken together, our genetic and biochemical results strongly indicate crosstalk between autophagy and cell growth regulation.


Molecular and Cellular Biology | 2003

Discrete Functions of TRAF1 and TRAF2 in Drosophila melanogaster Mediated by c-Jun N-Terminal Kinase and NF-κB-Dependent Signaling Pathways

Guang Ho Cha; Kyoung Sang Cho; Jun Hee Lee; Myungjin Kim; Euysoo Kim; Jeehye Park; Sung Bae Lee; Jongkyeong Chung

ABSTRACT Two Drosophila tumor necrosis factor receptor-associated factors (TRAF), DTRAF1 and DTRAF2, are proposed to have similar functions with their mammalian counterparts as a signal mediator of cell surface receptors. However, their in vivo functions and related signaling pathways are not fully understood yet. Here, we show that DTRAF1 is an in vivo regulator of c-Jun N-terminal kinase (JNK) pathway in Drosophila melanogaster. Ectopic expression of DTRAF1 in the developing eye induced apoptosis, thereby causing a rough-eye phenotype. Further genetic interaction analyses revealed that the apoptosis in the eye imaginal disc and the abnormal eye morphogenesis induced by DTRAF1 are dependent on JNK and its upstream kinases, Hep and DTAK1. In support of these results, DTRAF1-null mutant showed a remarkable reduction in JNK activity with an impaired development of imaginal discs and a defective formation of photosensory neuron arrays. In contrast, DTRAF2 was demonstrated as an upstream activator of nuclear factor-κB (NF-κB). Ectopic expression of DTRAF2 induced nuclear translocation of two Drosophila NF-κBs, DIF and Relish, consequently activating the transcription of the antimicrobial peptide genes diptericin, diptericin-like protein, and drosomycin. Consistently, the null mutant of DTRAF2 showed immune deficiencies in which NF-κB nuclear translocation and antimicrobial gene transcription against microbial infection were severely impaired. Collectively, our findings demonstrate that DTRAF1 and DTRAF2 play pivotal roles in Drosophila development and innate immunity by differentially regulating the JNK- and the NF-κB-dependent signaling pathway, respectively.


FEBS Letters | 2003

In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila.

Jun Hee Lee; Eunji Lee; Jeehye Park; Euysoo Kim; Jaeseob Kim; Jongkyeong Chung

p53 is a representative tumor suppressor whose dysfunction is a major cause of human cancer syndrome. Here we isolated flies lacking Dmp53, which encodes the single Drosophila orthologue of mammalian p53 family. Dmp53 null mutants well developed into adults, only displaying mild defects in longevity and fertility. However, genomic stability and viability of Dmp53 mutants dramatically decreased upon ionizing irradiation. Moreover, mutating Dmp53 abolished irradiation‐induced apoptosis and reaper induction. These results indicate that Dmp53 is a central component of DNA damage‐dependent apoptotic signaling.


Disease Models & Mechanisms | 2009

Mitochondrial dysfunction and Parkinson’s disease genes: insights from Drosophila

Jeehye Park; Yongsung Kim; Jongkyeong Chung

Parkinson’s disease (PD), one of the most common neurodegenerative disorders worldwide, currently lacks a cure. Although most PD cases occur sporadically, studies from rare genetic mutations give significant insights into addressing the pathological mechanism of not only familial PD, but also sporadic PD. Recent PD research focuses on generating genetic mutant animal models that recapitulate the features of human PD patients. Significant advances in PD research have resulted from studying Drosophila mutants of several identified PD-associated genes because they show strikingly visible phenotypes. In particular, previous studies with the Drosophila mutants parkin and PINK1, which are two common causative genes among PD familial forms, have suggested strongly that mitochondrial dysfunction is the prominent cause for the PD pathogenesis and that these two PD genes are in a common pathway, with Parkin downstream of PINK1. Recent genetic studies have revealed that the PINK1-Parkin pathway is involved in regulating the mitochondrial remodeling process. In addition, PINK1 was recently found to regulate the localization of Parkin through direct phosphorylation. Here, we briefly review these new and exciting findings in Drosophila PD models and discuss how using these models can further advance PD studies.


Molecular and Cellular Biology | 2004

MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development.

Myungjin Kim; Guang Ho Cha; Sunhong Kim; Jun Hee Lee; Jeehye Park; Hyongjong Koh; Kang Yell Choi; Jongkyeong Chung

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


Journal of Biological Chemistry | 2012

Silent Information Regulator 2 (Sir2) and Forkhead box O (FOXO) Complement Mitochondrial Dysfunction and Dopaminergic Neuron Loss in Drosophila Pten-induced kinase 1 (PINK1) Null Mutant

Hyongjong Koh; Hyun-Jin Kim; Min Ju Kim; Jeehye Park; Hye-Jeong Lee; Jongkyeong Chung

Background: PINK1 loss of function induces mitochondrial dysfunction and dopaminergic neuron loss in Drosophila. Results: Sir2 shows a specific genetic interaction with PINK1 and rescues PINK1 null mutant phenotypes via FOXO. Conclusion: The strong genetic and functional interactions suggest that Sir2 and FOXO protect mitochondria and dopaminergic neuron downstream of PINK1. Significance: Understanding the molecular roles of PINK1 will be helpful for deciphering the molecular pathogenesis of Parkinson disease. PTEN-induced kinase 1 (PINK1), which is associated with early onset Parkinson disease, encodes a serine-threonine kinase that is critical for maintaining mitochondrial function. Moreover, another Parkinson disease-linked gene, parkin, functions downstream of PINK1 in protecting mitochondria and dopaminergic (DA) neuron. In our fly genetic screening, knockdown of Sir2 blocked PINK1 overexpression-induced phenotypes. Consistently, ectopic expression of Sir2 successfully rescued mitochondrial defects in PINK1 null mutants, but unexpectedly, failed in parkin mutants. In further genetic analyses, deletion of FOXO nullified the Sir2-induced mitochondrial restoration in PINK1 null mutants. Moreover, overexpression of FOXO or its downstream target gene such as SOD2 or Thor markedly ameliorated PINK1 loss-of-function defects, suggesting that FOXO mediates the mitochondrial protecting signal induced by Sir2. Consistent with its mitochondria-protecting role, Sir2 expression prevented the DA neuron loss of PINK1 null mutants in a FOXO-dependent manner. Loss of Sir2 or FOXO induced DA neuron degeneration, which is very similar to that of PINK1 null mutants. Furthermore, PINK1 deletion had no deleterious effect on the DA neuron loss in Sir2 or FOXO mutants, supporting the idea that Sir2, FOXO, and PINK1 protect DA neuron in a common pathway. Overall, these results strongly support the role of Sir2 and FOXO in preventing mitochondrial dysfunction and DA neuron loss, further suggesting that Sir2 and FOXO function downstream of PINK1 and independently of Parkin.


Journal of Biological Chemistry | 2013

Characterization of PINK1 (PTEN-induced Putative Kinase 1) Mutations Associated with Parkinson Disease in Mammalian Cells and Drosophila

Saera Song; Seoyeon Jang; Jeehye Park; Sunhoe Bang; Sekyu Choi; Kyum-Yil Kwon; Xiaoxi Zhuang; Eunjoon Kim; Jongkyeong Chung

Background: Mutations in PINK1 cause recessive Parkinson disease. Results: PINK1 mutations in the kinase domain hamper Parkin translocation to mitochondria, and their analogous mutations in Drosophila cannot rescue PINK1-null phenotypes. Conclusion: PINK1 kinase activity is essential for its function and for regulating Parkin functions in mitochondria. Significance: Understanding the roles of PINK1 mutations will be helpful for deciphering the pathogenic mechanism of PINK1-linked Parkinson disease. Mutations in PINK1 (PTEN-induced putative kinase 1) are tightly linked to autosomal recessive Parkinson disease (PD). Although more than 50 mutations in PINK1 have been discovered, the role of these mutations in PD pathogenesis remains poorly understood. Here, we characterized 17 representative PINK1 pathogenic mutations in both mammalian cells and Drosophila. These mutations did not affect the typical cleavage patterns and subcellular localization of PINK1 under both normal and damaged mitochondria conditions in mammalian cells. However, PINK1 mutations in the kinase domain failed to translocate Parkin to mitochondria and to induce mitochondrial aggregation. Consistent with the mammalian data, Drosophila PINK1 mutants with mutations in the kinase domain (G426D and L464P) did not genetically interact with Parkin. Furthermore, PINK1-null flies expressing the transgenic G426D mutant displayed defective phenotypes with increasing age, whereas L464P mutant-expressing flies exhibited the phenotypes at an earlier age. Collectively, these results strongly support the hypothesis that the kinase activity of PINK1 is essential for its function and for regulating downstream Parkin functions in mitochondria. We believe that this study provides the basis for understanding the molecular and physiological functions of various PINK1 mutations and provides insights into the pathogenic mechanisms of PINK1-linked PD.

Collaboration


Dive into the Jeehye Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Man Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saera Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jun Hee Lee

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge