Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jef Rozenski is active.

Publication


Featured researches published by Jef Rozenski.


Nucleic Acids Research | 2011

The RNA modification database, RNAMDB: 2011 update

William A. Cantara; Pamela F. Crain; Jef Rozenski; James A. McCloskey; Kimberly A. Harris; Xiaonong Zhang; Franck A. P. Vendeix; Daniele Fabris; Paul F. Agris

Since its inception in 1994, The RNA Modification Database (RNAMDB, http://rna-mdb.cas.albany.edu/RNAmods/) has served as a focal point for information pertaining to naturally occurring RNA modifications. In its current state, the database employs an easy-to-use, searchable interface for obtaining detailed data on the 109 currently known RNA modifications. Each entry provides the chemical structure, common name and symbol, elemental composition and mass, CA registry numbers and index name, phylogenetic source, type of RNA species in which it is found, and references to the first reported structure determination and synthesis. Though newly transferred in its entirety to The RNA Institute, the RNAMDB continues to grow with two notable additions, agmatidine and 8-methyladenosine, appended in the last year. The RNA Modification Database is staying up-to-date with significant improvements being prepared for inclusion within the next year and the following year. The expanded future role of The RNA Modification Database will be to serve as a primary information portal for researchers across the entire spectrum of RNA-related research.


The EMBO Journal | 2010

Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio

Inna Kuperstein; Kerensa Broersen; Iryna Benilova; Jef Rozenski; Wim Jonckheere; Maja Debulpaep; Annelies Vandersteen; Ine Segers-Nolten; Kees van der Werf; Vinod Subramaniam; Dries Braeken; Geert Callewaert; Carmen Bartic; Rudi D'Hooge; Ivo Martins; Frederic Rousseau; Joost Schymkowitz; Bart De Strooper

The amyloid peptides Aβ40 and Aβ42 of Alzheimers disease are thought to contribute differentially to the disease process. Although Aβ42 seems more pathogenic than Aβ40, the reason for this is not well understood. We show here that small alterations in the Aβ42:Aβ40 ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aβ42:Aβ40 ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aβ species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aβ peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti‐amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non‐toxic intermediates.


Nature Chemical Biology | 2011

Gain of function of mutant p53 by coaggregation with multiple tumor suppressors

Jie Xu; Joke Reumers; José Couceiro; Frederik De Smet; Rodrigo Gallardo; Stanislav Rudyak; Ann Cornelis; Jef Rozenski; Aleksandra Zwolinska; Jean-Christophe Marine; Diether Lambrechts; Young-Ah Suh; Frederic Rousseau; Joost Schymkowitz

Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.


Journal of Virology | 2006

A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase

Jan Paeshuyse; Pieter Leyssen; Eric Mabery; Nina Boddeker; Robert Vrancken; Matheus Froeyen; Israrul H. Ansari; Hélène Dutartre; Jef Rozenski; Laura H.V.G. Gil; Carine Letellier; Robert E. Lanford; Bruno Canard; F. Koenen; Pierre Kerkhofs; Ruben O. Donis; Piet Herdewijn; Julia Watson; Erik De Clercq; Gerhard Puerstinger; Johan Neyts

ABSTRACT We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 ± 0.01 μM. Comparable reduction of viral RNA synthesis (EC50 = 0.12± 0.02 μM) and production of infectious virus (EC50 = 0.074 ± 0.003 μM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was ∼2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed.


Journal of the American Society for Mass Spectrometry | 2002

SOS: A simple interactive program for ab initio oligonucleotide sequencing by mass spectrometry

Jef Rozenski; James A. McCloskey

Mass spectra of oligonucleotides derived from collision-induced dissociation following electrospray ionization provide an effective means of sequence determination, at the 20-mer level and below. An interactive, stand-alone computer program, Simple Oligonucleotide Sequencer (SOS) has been developed for rapid oligonucleotide sequencing from mass spectra, under user control on a residue by residue basis. Modifications can be defined in any combination for the base, sugar or backbone. Sequence ladders can be independently constructed in both the 5′ → 3′’ directions and 3′ → 5′ directions, and graphically compared for homology and overlap. A particular advantage of this method is the ability to easily erase and rebuild alternate subsequences. The program can be used for ab initio sequencing of modified or unmodified oligonucleotides, for rapid verification of sequence, and in studies of fragmentation processes of model oligonucleotide derivatives.


Nucleic Acids Research | 2004

The Small Subunit rRNA Modification Database.

James A. McCloskey; Jef Rozenski

The Small Subunit rRNA Modification Database provides a listing of reported post-transcriptionally modified nucleosides and sequence sites in small subunit rRNAs from bacteria, archaea and eukarya. Data are compiled from reports of full or partial rRNA sequences, including RNase T1 oligonucleotide catalogs reported in earlier literature in studies of phylogenetic relatedness. Options for data presentation include full sequence maps, some of which have been assembled by database curators with the aid of contemporary gene sequence data, and tabular forms organized by source organism or chemical identity of the modification. A total of 32 rRNA sequence alignments are provided, annotated with sites of modification and chemical identities of modifications if known, with provision for scrolling full sequences or user-dictated subsequences for comparative viewing for organisms of interest. The database can be accessed through the World Wide Web at http://medlib.med.utah.edu/SSUmods.


PLOS ONE | 2011

Zebrafish Bioassay-Guided Natural Product Discovery: Isolation of Angiogenesis Inhibitors from East African Medicinal Plants

Alexander D. Crawford; Sandra Liekens; Appolinary R. Kamuhabwa; Jan Maes; Sebastian Munck; Roger Busson; Jef Rozenski; Camila V. Esguerra; Peter de Witte

Natural products represent a significant reservoir of unexplored chemical diversity for early-stage drug discovery. The identification of lead compounds of natural origin would benefit from therapeutically relevant bioassays capable of facilitating the isolation of bioactive molecules from multi-constituent extracts. Towards this end, we developed an in vivo bioassay-guided isolation approach for natural product discovery that combines bioactivity screening in zebrafish embryos with rapid fractionation by analytical thin-layer chromatography (TLC) and initial structural elucidation by high-resolution electrospray mass spectrometry (HRESIMS). Bioactivity screening of East African medicinal plant extracts using fli-1:EGFP transgenic zebrafish embryos identified Oxygonum sinuatum and Plectranthus barbatus as inhibiting vascular development. Zebrafish bioassay-guided fractionation identified the active components of these plants as emodin, an inhibitor of the protein kinase CK2, and coleon A lactone, a rare abietane diterpenoid with no previously described bioactivity. Both emodin and coleon A lactone inhibited mammalian endothelial cell proliferation, migration, and tube formation in vitro, as well as angiogenesis in the chick chorioallantoic membrane (CAM) assay. These results suggest that the combination of zebrafish bioassays with analytical chromatography methods is an effective strategy for the rapid identification of bioactive natural products.


Protein Engineering Design & Selection | 2011

A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer's disease

Kerensa Broersen; Wim Jonckheere; Jef Rozenski; Annelies Vandersteen; Kris Pauwels; Annalisa Pastore; Frederic Rousseau; Joost Schymkowitz

We provide a validated and rapid protocol for the solubilization of amyloid β-peptide (Aβ). This procedure involves sequential solubilization using structure-breaking organic solvents hexafluoroisopropanol and DMSO followed by column purification. The low solubility and tendency of Aβ to aggregate considerably impede the in vitro handling and biophysical or biological investigation of Aβ, despite the interest in this peptide because of its implication in Alzheimers disease. The main advantage of the proposed protocol over others is that it results in standardized aggregate-free Aβ peptide samples that are biocompatible for cell culture studies and yield reproducible aggregation kinetics and cytotoxicities. This three-step protocol also enables the co-solubilization of the longer Aβ42 variant with Aβ40 in ratios relevant to Alzheimers disease.


PLOS ONE | 2013

The Antimicrobial Compound Xantholysin Defines a New Group of Pseudomonas Cyclic Lipopeptides

Wen Li; Hassan Rokni-Zadeh; Matthias De Vleeschouwer; Maarten G. K. Ghequire; Davy Sinnaeve; Guanlin Xie; Jef Rozenski; Annemieke Madder; José Martins; René De Mot

The rhizosphere isolate Pseudomonas putida BW11M1 produces a mixture of cyclic lipopeptide congeners, designated xantholysins. Properties of the major compound xantholysin A, shared with several other Pseudomonas lipopeptides, include antifungal activity and toxicity to Gram-positive bacteria, a supportive role in biofilm formation, and facilitation of surface colonization through swarming. Atypical is the lipopeptide’s capacity to inhibit some Gram-negative bacteria, including several xanthomonads. The lipotetradecadepsipeptides are assembled by XtlA, XtlB and XtlC, three co-linearly operating non-ribosomal peptide synthetases (NRPSs) displaying similarity in modular architecture with the entolysin-producing enzymes of the entomopathogenic Pseudomonas entomophila L48. A shifted serine-incorporating unit in the eight-module enzyme XtlB elongating the central peptide moiety not only generates an amino acid sequence differing at several equivalent positions from entolysin, but also directs xantholysin’s macrocyclization into an octacyclic structure, distinct from the pentacyclic closure in entolysin. Relaxed fatty acid specificity during lipoinitiation by XtlA (acylation with 3-hydroxydodec-5-enoate instead of 3-hydroxydecanoate) and for incorporation of the ultimate amino acid by XtlC (valine instead of isoleucine) account for the production of the minor structural variants xantholysin C and B, respectively. Remarkably, the genetic backbones of the xantholysin and entolysin NRPS systems also bear pronounced phylogenetic similarity to those of the P. putida strains PCL1445 and RW10S2, albeit generating the seemingly structurally unrelated cyclic lipopeptides putisolvin (undecapeptide containing a cyclotetrapeptide) and WLIP (nonapeptide containing a cycloheptapeptide), respectively. This similarity includes the linked genes encoding the cognate LuxR-family regulator and tripartite export system components in addition to individual modules of the NRPS enzymes, and probably reflects a common evolutionary origin. Phylogenetic scrutiny of the modules used for selective amino acid activation by these synthetases indicates that bacteria such as pseudomonads recruit and reshuffle individual biosynthetic units and blocks thereof to engineer reorganized or novel NRPS assembly lines for diversified synthesis of lipopeptides.


Tetrahedron | 2001

Suzuki reactions on chloropyridazinones: an easy approach towards arylated 3(2H)-pyridazinones

Bert U. W. Maes; Omar R'kyek; Janez Košmrlj; Guy Lemière; Eddy L. Esmans; Jef Rozenski; Roger Dommisse; Achiel Haemers

Abstract The synthesis of 4-aryl-5-methoxy-, 5-aryl-4-methoxy- and 4,5-diaryl-3(2H)-pyridazinones via Suzuki palladium-catalysed cross-coupling reactions with the corresponding chloro-3(2H)-pyridazinones is described.

Collaboration


Dive into the Jef Rozenski's collaboration.

Top Co-Authors

Avatar

Piet Herdewijn

University of Évry Val d'Essonne

View shared research outputs
Top Co-Authors

Avatar

Arthur Van Aerschot

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Roger Busson

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eveline Lescrinier

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Guy Schepers

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sergey N. Mikhailov

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Steven De Jonghe

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ekaterina V. Efimtseva

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Erik De Clercq

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Johan Neyts

Rega Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge