Jeff Coleman
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeff Coleman.
Journal of Cell Biology | 2003
Paula Estrada; Jiwon Kim; Jeff Coleman; Lee Walker; Brian Dunn; Peter A. Takizawa; Peter Novick; Susan Ferro-Novick
Myo4p is a nonessential type V myosin required for the bud tip localization of ASH1 and IST2 mRNA. These mRNAs associate with Myo4p via the She2p and She3p proteins. She3p is an adaptor protein that links Myo4p to its cargo. She2p binds to ASH1 and IST2 mRNA, while She3p binds to both She2p and Myo4p. Here we show that Myo4p and She3p, but not She2p, are required for the inheritance of cortical ER in the budding yeast Saccharomyces cerevisiae. Consistent with this observation, we find that cortical ER inheritance is independent of mRNA transport. Cortical ER is a dynamic network that forms cytoplasmic tubular connections to the nuclear envelope. ER tubules failed to grow when actin polymerization was blocked with the drug latrunculin A (Lat-A). Additionally, a reduction in the number of cytoplasmic ER tubules was observed in Lat-A–treated and myo4Δ cells. Our results suggest that Myo4p and She3p facilitate the growth and orientation of ER tubules.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Erdem Karatekin; Jérôme Di Giovanni; Cécile Iborra; Jeff Coleman; Ben O'Shaughnessy; Michael Seagar
Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast fusion which can occur in cells. Here we show that single vesicles containing the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fuse rapidly with planar, supported bilayers containing the synaptic/exocytic t-SNAREs syntaxin-SNAP25. Fusion rates decreased dramatically when the number of externally oriented v-SNAREs per vesicle was reduced below 5–10, directly establishing this as the minimum number required for rapid fusion. Docking-to-fusion delay time distributions were consistent with a requirement that 5–11 t-SNAREs be recruited to achieve fusion, closely matching the v-SNARE requirement.
Developmental Cell | 2010
Emi Mizuno-Yamasaki; Martina Medkova; Jeff Coleman; Peter Novick
Sec2p is the guanine nucleotide exchange factor (GEF) that activates the Rab GTPase Sec4p on secretory vesicles. Sec2p also binds a Rab acting earlier in the secretory pathway, Ypt32-GTP, forming a Rab GEF cascade. Ypt32p and the Sec4p effector Sec15p (a component of the exocyst complex) compete for binding to Sec2p. Indeed Ypt32p initially recruits Sec2p, but subsequently allows a handoff of active Sec2p/Sec4p to Sec15p. Intriguingly, Golgi-associated phosphatidylinositol 4-phosphate (PI4P) works together with Ypt32-GTP in this context. PI4P inhibits Sec2p-Sec15p interactions, promoting recruitment of Sec2p by Ypt32p as secretory vesicles form. However, PI4P levels appear to decline as vesicles reach secretory sites, allowing Sec15p to replace Ypt32p as vesicles mature. In this way, the regulation of PI4P levels may switch Sec2p/Sec4p function during vesicle maturation, from a Rab GEF recruitment cascade involving Ypt32p to an effector positive feedback loop involving Sec15p.
Journal of Cell Science | 2006
Charles Boyd; Jeff Coleman; Peter Novick
Spatial regulation of the secretory machinery is essential for the formation of a new bud in Saccharomyces cerevisiae. Yet, the mechanisms underlying cross-talk between the secretory and the cell-polarity-establishment machineries have not been fully elucidated. Here, we report that Sec15p, a subunit of the exocyst complex, might provide one line of communication. Not only is Sec15p an effector of the rab protein Sec4p, the master regulator of post-Golgi trafficking, but it also interacts with components of the polarity-establishment machinery. We have demonstrated a direct physical interaction between Sec15p and Bem1p, a protein involved in the Cdc42p-mediated polarity-establishment pathway, confirming a prior two-hybrid study. When this interaction is compromised, as in the case of cells lacking the N-terminal 138 residues of Bem1p, including the first Src-homology 3 (SH3) domain, the localization of green fluorescent protein (GFP)-tagged Sec15 is affected, especially in the early stage of bud growth. In addition, Sec15-1p, which is defective in Bem1p binding, mislocalizes along with Sec8p, another exocyst subunit. Overall, our evidence suggests that the interaction of Sec15p with Bem1p is important for Sec15p localization at the early stage of bud growth and, through this interaction, Sec15p might play a crucial role in integrating the signals between Sec4p and the components of the early-polarity-establishment machinery. This, in turn, helps to coordinate the secretory pathway and polarized bud growth.
eLife | 2014
Sylvain Zorman; Aleksander A. Rebane; Lu Ma; Guangcan Yang; Matthew A. Molski; Jeff Coleman; Frédéric Pincet; Yongli Zhang
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are evolutionarily conserved machines that couple their folding/assembly to membrane fusion. However, it is unclear how these processes are regulated and function. To determine these mechanisms, we characterized the folding energy and kinetics of four representative SNARE complexes at a single-molecule level using high-resolution optical tweezers. We found that all SNARE complexes assemble by the same step-wise zippering mechanism: slow N-terminal domain (NTD) association, a pause in a force-dependent half-zippered intermediate, and fast C-terminal domain (CTD) zippering. The energy release from CTD zippering differs for yeast (13 kBT) and neuronal SNARE complexes (27 kBT), and is concentrated at the C-terminal part of CTD zippering. Thus, SNARE complexes share a conserved zippering pathway and polarized energy release to efficiently drive membrane fusion, but generate different amounts of zippering energy to regulate fusion kinetics. DOI: http://dx.doi.org/10.7554/eLife.03348.001
Journal of the American Chemical Society | 2014
Feng Li; Daniel Kümmel; Jeff Coleman; Karin M. Reinisch; Frédéric Pincet
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate fusion by pulling biological membranes together via a zippering mechanism. Recent biophysical studies have shown that t- and v-SNAREs can assemble in multiple stages from the N-termini toward the C-termini. Here we show that functionally, membrane fusion requires a sequential, two-step folding pathway and assign specific and distinct functions for each step. First, the N-terminal domain (NTD) of the v-SNARE docks to the t-SNARE, which leads to a conformational rearrangement into an activated half-zippered SNARE complex. This partially assembled SNARE complex locks the C-terminal (CTD) portion of the t-SNARE into the same structure as in the postfusion 4-helix bundle, thereby creating the binding site for the CTD of the v-SNARE and enabling fusion. Then zippering of the remaining CTD, the membrane-proximal linker (LD), and transmembrane (TMD) domains is required and sufficient to trigger fusion. This intrinsic property of the SNAREs fits well with the action of physiologically vital regulators such as complexin. We also report that NTD assembly is the rate-limiting step. Our findings provide a refined framework for delineating the molecular mechanism of SNARE-mediated membrane fusion and action of regulatory proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jing Wang; Oscar D. Bello; Sarah M. Auclair; Jeff Coleman; Frédéric Pincet; Shyam S. Krishnakumar; Charles V. Sindelar
Significance Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Richard W. Cho; Daniel Kümmel; Feng Li; Stephanie Wood Baguley; Jeff Coleman; J. Troy Littleton
Significance Synaptic vesicle fusion at synapses is the primary mechanism by which neurons communicate. A highly conserved membrane fusion machine known as the SNARE complex mediates this process. In addition, neuronal SNARE-binding regulatory proteins have evolved to control the kinetics and speed of SNARE assembly at synapses. One such SNARE-binding protein, Complexin, has been found to inhibit synaptic vesicle fusion in the absence of an action potential and activate SNARE-mediated release during stimulation. Here we examine molecular models for how Complexin can mediate these unique effects on the SNARE fusion machine using genetic rescue experiments in Drosophila. We find that alternate SNARE-binding mechanisms by Complexin are likely to contribute to distinct inhibitory and activating functions in vivo. Complexin (Cpx) is a SNARE-binding protein that regulates neurotransmission by clamping spontaneous synaptic vesicle fusion in the absence of Ca2+ influx while promoting evoked release in response to an action potential. Previous studies indicated Cpx may cross-link multiple SNARE complexes via a trans interaction to function as a fusion clamp. During Ca2+ influx, Cpx is predicted to undergo a conformational switch and collapse onto a single SNARE complex in a cis-binding mode to activate vesicle release. To test this model in vivo, we performed structure–function studies of the Cpx protein in Drosophila. Using genetic rescue approaches with cpx mutants that disrupt SNARE cross-linking, we find that manipulations that are predicted to block formation of the trans SNARE array disrupt the clamping function of Cpx. Unexpectedly, these same mutants rescue action potential-triggered release, indicating trans–SNARE cross-linking by Cpx is not a prerequisite for triggering evoked fusion. In contrast, mutations that impair Cpx-mediated cis–SNARE interactions that are necessary for transition from an open to closed conformation fail to rescue evoked release defects in cpx mutants, although they clamp spontaneous release normally. Our in vivo genetic manipulations support several predictions made by the Cpx cross-linking model, but unexpected results suggest additional mechanisms are likely to exist that regulate Cpx’s effects on SNARE-mediated fusion. Our findings also indicate that the inhibitory and activating functions of Cpx are genetically separable, and can be mapped to distinct molecular mechanisms that differentially regulate the SNARE fusion machinery.
Genes & Development | 2013
Thierry Doan; Jeff Coleman; Kathleen A. Marquis; Alex J. Meeske; Briana M. Burton; Erdem Karatekin; David Z. Rudner
How bacteria catalyze membrane fission during growth and differentiation is an outstanding question in prokaryotic cell biology. Here, we describe a protein (FisB, for fission protein B) that mediates membrane fission during the morphological process of spore formation in Bacillus subtilis. Sporulating cells divide asymmetrically, generating a large mother cell and smaller forespore. After division, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Membrane fission releases the forespore into the mother cell cytoplasm. Cells lacking FisB are severely and specifically impaired in the fission reaction. Moreover, GFP-FisB forms dynamic foci that become immobilized at the site of fission. Purified FisB catalyzes lipid mixing in vitro and is only required in one of the fusing membranes, suggesting that FisB-lipid interactions drive membrane remodeling. Consistent with this idea, the extracytoplasmic domain of FisB binds with remarkable specificity to cardiolipin, a lipid enriched in the engulfing membranes and regions of negative curvature. We propose that membrane topology at the final stage of engulfment and FisB-cardiolipin interactions ensure that the mother cell membranes are severed at the right time and place. The unique properties of FisB set it apart from the known fission machineries in eukaryotes, suggesting that it represents a new class of fission proteins.
Molecular Biology of the Cell | 2009
Alex Hutagalung; Jeff Coleman; Marc Pypaert; Peter Novick
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.