Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Crosby is active.

Publication


Featured researches published by Jeff Crosby.


Nucleic Acids Research | 2014

Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice

Thazha P. Prakash; Mark J. Graham; Jinghua Yu; Rick Carty; Audrey Low; Alfred Chappell; Karsten Schmidt; Chenguang Zhao; Mariam Aghajan; Heather F. Murray; Stan Riney; Sheri L. Booten; Susan F. Murray; Hans Gaus; Jeff Crosby; Walt F. Lima; Shuling Guo; Brett P. Monia; Eric E. Swayze; Punit P. Seth

Triantennary N-acetyl galactosamine (GalNAc, GN3), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6–10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2′-O-Et-2′,4′-bridged nucleic acid) gapmer ASOs, ∼60-fold enhancement in potency relative to the parent MOE (2′-O-methoxyethyl RNA) ASO was observed. GN3-conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3-ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3-ASO conjugate was detected in plasma suggesting that GN3 acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs.


Blood | 2011

Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding

Alexey S. Revenko; Dacao Gao; Jeff Crosby; Gourab Bhattacharjee; Chenguang Zhao; Chris May; David Gailani; Brett P. Monia; A. Robert MacLeod

Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases.


Journal of Medicinal Chemistry | 2016

Comprehensive Structure-Activity Relationship of Triantennary N-Acetylgalactosamine Conjugated Antisense Oligonucleotides for Targeted Delivery to Hepatocytes.

Thazha P. Prakash; Jinghua Yu; Michael T. Migawa; Garth A. Kinberger; W. Brad Wan; Michael E. Østergaard; Recaldo L. Carty; Guillermo Vasquez; Audrey Low; Alfred Chappell; Karsten Schmidt; Mariam Aghajan; Jeff Crosby; Heather M. Murray; Sheri L. Booten; Jill Hsiao; Armand Soriano; Todd Machemer; Patrick Cauntay; Sebastien A. Burel; Susan F. Murray; Hans Gaus; Mark J. Graham; Eric E. Swayze; Punit P. Seth

The comprehensive structure-activity relationships of triantennary GalNAc conjugated ASOs for enhancing potency via ASGR mediated delivery to hepatocytes is reported. Seventeen GalNAc clusters were assembled from six distinct scaffolds and attached to ASOs. The resulting ASO conjugates were evaluated in ASGR binding assays, in primary hepatocytes, and in mice. Five structurally distinct GalNAc clusters were chosen for more extensive evaluation using ASOs targeting SRB-1, A1AT, FXI, TTR, and ApoC III mRNAs. GalNAc-ASO conjugates exhibited excellent potencies (ED50 0.5-2 mg/kg) for reducing the targeted mRNAs and proteins. This work culminated in the identification of a simplified tris-based GalNAc cluster (THA-GN3), which can be efficiently assembled using readily available starting materials and conjugated to ASOs using a solution phase conjugation strategy. GalNAc-ASO conjugates thus represent a viable approach for enhancing potency of ASO drugs in the clinic without adding significant complexity or cost to existing protocols for manufacturing oligonucleotide drugs.


Journal of Cystic Fibrosis | 2017

Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice

Jeff Crosby; Chenguang Zhao; Chong Jiang; Dong Bai; Melanie Katz; Sarah Greenlee; Hiroshi Kawabe; Michael L. McCaleb; Daniela Rotin; Shuling Guo; Brett P. Monia

BACKGROUND Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. METHODS We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. RESULTS The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. CONCLUSIONS Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung.


EBioMedicine | 2018

IL-4 Receptor Alpha Signaling through Macrophages Differentially Regulates Liver Fibrosis Progression and Reversal

S.-Y. Weng; X.-Y. Wang; Santosh Vijayan; Yilang Tang; Y.O. Kim; Kornelius Padberg; Tommy Regen; Olena Molokanova; Tao Chen; Tobias Bopp; Hansjörg Schild; Frank Brombacher; Jeff Crosby; Michael L. McCaleb; Ari Waisman; Ernesto Bockamp; Detlef Schuppan

Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα−/− as well as in macrophage-specific IL-4Rα−/− (IL-4RαΔLysM) mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. Research in Context Alternative (M2-type) macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression.


Journal of Cystic Fibrosis | 2018

Antisense oligonucleotide targeting of mRNAs encoding ENaC subunits α, β, and γ improves cystic fibrosis-like disease in mice

Chenguang Zhao; Jeff Crosby; Tinghong Lv; Dong Bai; Brett P. Monia; Shuling Guo

BACKGROUND The epithelial sodium channel ENaC consists of three subunits encoded by Scnn1a, Scnn1b, and Scnn1g and increased sodium absorption through this channel is hypothesized to lead to mucus dehydration and accumulation in cystic fibrosis (CF) patients. METHODS We identified potent and specific antisense oligonucleotides (ASOs) targeting mRNAs encoding the ENaC subunits and evaluated these ASOs in mouse models of CF-like lung disease. RESULTS ASOs designed to target mRNAs encoding each ENaC subunit or a control ASO were administered directly into the lungs of mice. The reductions in ENaC subunits correlated well with a reduction in amiloride sensitive channel conductance. In addition, levels of mucus markers Gob5, AGR2, Muc5ac, and Muc5b, periodic acid-Schiffs reagent (PAS) goblet cell staining, and neutrophil recruitment were reduced and lung function was improved when levels of any of the ENaC subunits were decreased. CONCLUSIONS Delivery of ASOs targeting mRNAs encoding each of the three ENaC subunits directly into the lung improved disease phenotypes in a mouse model of CF-like lung disease. These findings suggest that targeting ENaC subunits could be an effective approach for the treatment of CF.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

Inhibition of the extrinsic or intrinsic coagulation pathway during pneumonia derived sepsis

Ingrid Stroo; Chao Ding; Andreja Novak; Jack Yang; Joris J. T. H. Roelofs; Joost C. M. Meijers; Alexey S. Revenko; Cornelis van 't Veer; Sacha Zeerleder; Jeff Crosby; Tom van der Poll

Pneumonia is the most frequent cause of sepsis, and Klebsiella pneumoniae is a common pathogen in pneumonia and sepsis. Infection is associated with activation of the coagulation system. Coagulation can be activated by the extrinsic and intrinsic routes, mediated by factor VII (FVII) and factor XII (FXII), respectively. To determine the role of FVII and FXII in the host response during pneumonia-derived sepsis, mice were treated with specific antisense oligonucleotide (ASO) directed at FVII or FXII for 3 wk before infection with K. pneumoniae via the airways. FVII ASO treatment strongly inhibited hepatic FVII mRNA expression, reduced plasma FVII to ~25% of control, and selectively prolonged the prothrombin time. FXII ASO treatment strongly suppressed hepatic FXII mRNA expression, reduced plasma FXII to ~20% of control, and selectively prolonged the activated partial thromboplastin time. Lungs also expressed FVII mRNA, which was not altered by FVII ASO administration. Very low FXII mRNA levels were detected in lungs, which were not modified by FXII ASO treatment. FVII ASO attenuated systemic activation of coagulation but did not influence fibrin deposition in lung tissue. FVII ASO enhanced bacterial loads in lungs and mitigated sepsis-induced distant organ injury. FXII inhibition did not affect any of the host response parameters measured. These results suggest that partial inhibition of FVII, but not of FXII, modifies the host response to gram-negative pneumonia-derived sepsis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

Kininogen deficiency or depletion reduces enhanced pause independent of pulmonary inflammation in a house dust mite induced murine asthma model

Jack Yang; Cornelis van 't Veer; Joris J. T. H. Roelofs; Jeroen W. J. van Heijst; Alex F. de Vos; Keith R. McCrae; Alexey S. Revenko; Jeff Crosby; Tom van der Poll

High-molecular-weight kininogen is an important substrate of the kallikrein-kinin system. Activation of this system has been associated with aggravation of hallmark features in asthma. We aimed to determine the role of kininogen in enhanced pause (Penh) measurements and lung inflammation in a house dust mite (HDM)-induced murine asthma model. Normal wild-type mice and mice with a genetic deficiency of kininogen were subjected to repeated HDM exposure (sensitization on days 0, 1, and 2; challenge on days 14, 15, 18, and 19) via the airways to induce allergic lung inflammation. Alternatively, kininogen was depleted after HDM sensitization by twice-weekly injections of a specific antisense oligonucleotide (kininogen ASO) starting at day 3. In kininogen-deficient mice HDM induced in Penh was completely prevented. Remarkably, kininogen deficiency did not modify HDM-induced eosinophil/neutrophil influx, T helper 2 responses, mucus production, or lung pathology. kininogen ASO treatment started after HDM sensitization reduced plasma kininogen levels by 75% and reproduced the phenotype of kininogen deficiency: kininogen ASO administration prevented the HDM-induced increase in Penh without influencing leukocyte influx, Th2 responses, mucus production, or lung pathology. This study suggests that kininogen could contribute to HDM-induced rise in Penh independently of allergic lung inflammation. Further research is warranted to confirm these data using invasive measurements of airway responsiveness.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

Limited role of kininogen in the host response during gram-negative pneumonia-derived sepsis

Chao Ding; Cornelis van ’t Veer; Joris J. T. H. Roelofs; Meenal Shukla; Keith R. McCrae; Alexey S. Revenko; Jeff Crosby; Tom van der Poll

High-molecular-weight kininogen (HK), together with factor XI, factor XII and prekallikrein, is part of the contact system that has proinflammatory, prothrombotic, and vasoactive properties. We hypothesized that HK plays a role in the host response during pneumonia-derived sepsis. To this end mice were depleted of kininogen (KNG) to plasma HK levels of 28% of normal by repeated treatment with a specific antisense oligonucleotide (KNG ASO) for 3 wk before infection with the common human sepsis pathogen Klebsiella pneumoniae via the airways. Whereas plasma HK levels increased during infection in mice treated with a scrambled control ASO (Ctrl ASO), HK level in the KNG ASO-treated group remained reduced to 25-30% of that in the corresponding Ctrl ASO group both before and after infection. KNG depletion did not influence bacterial growth in lungs or dissemination to distant body sites. KNG depletion was associated with lower lung CXC chemokine and myeloperoxidase levels but did not impact neutrophil influx, lung pathology, activation of the vascular endothelium, activation of the coagulation system, or the extent of distant organ injury. These results were corroborated by studies in mice with a genetic deficiency of KNG, which were indistinguishable from wild-type mice during Klebsiella-induced sepsis. Both KNG depletion and KNG deficiency were associated with strongly reduced plasma prekallikrein levels, indicating the carrier function of HK for this zymogen. This study suggests that KNG does not significantly contribute to the host defense during gram-negative pneumonia-derived sepsis.


Blood | 2012

Antisense inhibition of coagulation factor XI prolongs APTT without increased bleeding risk in cynomolgus monkeys

Husam Younis; Jeff Crosby; Jung-Im Huh; Hong Soo Lee; Soyub Rime; Brett P. Monia; Scott P. Henry

Collaboration


Dive into the Jeff Crosby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge