Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Donahue is active.

Publication


Featured researches published by Jeff Donahue.


acm multimedia | 2014

Caffe: Convolutional Architecture for Fast Feature Embedding

Yangqing Jia; Evan Shelhamer; Jeff Donahue; Sergey Karayev; Jonathan Long; Ross B. Girshick; Sergio Guadarrama; Trevor Darrell

Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU computation, processing over 40 million images a day on a single K40 or Titan GPU (approx 2 ms per image). By separating model representation from actual implementation, Caffe allows experimentation and seamless switching among platforms for ease of development and deployment from prototyping machines to cloud environments. Caffe is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with the help of an active community of contributors on GitHub. It powers ongoing research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia.


computer vision and pattern recognition | 2014

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

Ross B. Girshick; Jeff Donahue; Trevor Darrell; Jitendra Malik

Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.


computer vision and pattern recognition | 2016

Context Encoders: Feature Learning by Inpainting

Deepak Pathak; Philipp Krähenbühl; Jeff Donahue; Trevor Darrell; Alexei A. Efros

We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). When training context encoders, we have experimented with both a standard pixel-wise reconstruction loss, as well as a reconstruction plus an adversarial loss. The latter produces much sharper results because it can better handle multiple modes in the output. We found that a context encoder learns a representation that captures not just appearance but also the semantics of visual structures. We quantitatively demonstrate the effectiveness of our learned features for CNN pre-training on classification, detection, and segmentation tasks. Furthermore, context encoders can be used for semantic inpainting tasks, either stand-alone or as initialization for non-parametric methods.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Region-Based Convolutional Networks for Accurate Object Detection and Segmentation

Ross B. Girshick; Jeff Donahue; Trevor Darrell; Jitendra Malik

Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 50 percent relative to the previous best result on VOC 2012-achieving a mAP of 62.4 percent. Our approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call the resulting model an R-CNN or Region-based Convolutional Network. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.


north american chapter of the association for computational linguistics | 2015

Translating Videos to Natural Language Using Deep Recurrent Neural Networks

Subhashini Venugopalan; Huijuan Xu; Jeff Donahue; Marcus Rohrbach; Raymond J. Mooney; Kate Saenko

Solving the visual symbol grounding problem has long been a goal of artificial intelligence. The field appears to be advancing closer to this goal with recent breakthroughs in deep learning for natural language grounding in static images. In this paper, we propose to translate videos directly to sentences using a unified deep neural network with both convolutional and recurrent structure. Described video datasets are scarce, and most existing methods have been applied to toy domains with a small vocabulary of possible words. By transferring knowledge from 1.2M+ images with category labels and 100,000+ images with captions, our method is able to create sentence descriptions of open-domain videos with large vocabularies. We compare our approach with recent work using language generation metrics, subject, verb, and object prediction accuracy, and a human evaluation.


european conference on computer vision | 2014

Part-Based R-CNNs for Fine-Grained Category Detection

Ning Zhang; Jeff Donahue; Ross B. Girshick; Trevor Darrell

Semantic part localization can facilitate fine-grained categorization by explicitly isolating subtle appearance differences associated with specific object parts. Methods for pose-normalized representations have been proposed, but generally presume bounding box annotations at test time due to the difficulty of object detection. We propose a model for fine-grained categorization that overcomes these limitations by leveraging deep convolutional features computed on bottom-up region proposals. Our method learns whole-object and part detectors, enforces learned geometric constraints between them, and predicts a fine-grained category from a pose-normalized representation. Experiments on the Caltech-UCSD bird dataset confirm that our method outperforms state-of-the-art fine-grained categorization methods in an end-to-end evaluation without requiring a bounding box at test time.


european conference on computer vision | 2016

Generating Visual Explanations

Lisa Anne Hendricks; Zeynep Akata; Marcus Rohrbach; Jeff Donahue; Bernt Schiele; Trevor Darrell

Clearly explaining a rationale for a classification decision to an end user can be as important as the decision itself. Existing approaches for deep visual recognition are generally opaque and do not output any justification text; contemporary vision-language models can describe image content but fail to take into account class-discriminative image aspects which justify visual predictions. We propose a new model that focuses on the discriminating properties of the visible object, jointly predicts a class label, and explains why the predicted label is appropriate for the image. Through a novel loss function based on sampling and reinforcement learning, our model learns to generate sentences that realize a global sentence property, such as class specificity. Our results on the CUB dataset show that our model is able to generate explanations which are not only consistent with an image but also more discriminative than descriptions produced by existing captioning methods.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017

Long-Term Recurrent Convolutional Networks for Visual Recognition and Description

Jeff Donahue; Lisa Anne Hendricks; Marcus Rohrbach; Subhashini Venugopalan; Sergio Guadarrama; Kate Saenko; Trevor Darrell

Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or “temporally deep”, are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are “doubly deep” in that they can be compositional in spatial and temporal “layers”. Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.


robotics science and systems | 2014

Open-vocabulary Object Retrieval

Sergio Guadarrama; Erik Rodner; Kate Saenko; Ning Zhang; Ryan Farrell; Jeff Donahue; Trevor Darrell

In this paper, we address the problem of retrieving objects based on open-vocabulary natural language queries: Given a phrase describing a specific object, e.g., “the corn flakes box”, the task is to find the best match in a set of images containing candidate objects. When naming objects, humans tend to use natural language with rich semantics, including basic-level categories, fine-grained categories, and instance-level concepts such as brand names. Existing approaches to large-scale object recognition fail in this scenario, as they expect queries that map directly to a fixed set of pre-trained visual categories, e.g. ImageNet synset tags. We address this limitation by introducing a novel object retrieval method. Given a candidate object image, we first map it to a set of words that are likely to describe it, using several learned image-to-text projections. We also propose a method for handling open-vocabularies, i.e., words not contained in the training data. We then compare the natural language query to the sets of words predicted for each candidate and select the best match. Our method can combine categoryand instance-level semantics in a common representation. We present extensive experimental results on several datasets using both instance-level and category-level matching and show that our approach can accurately retrieve objects based on extremely varied open-vocabulary queries. The source code of our approach will be publicly available together with pre-trained models at http://openvoc.berkeleyvision.org and could be directly used for robotics applications.


International Journal of Computer Vision | 2014

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation

Judy Hoffman; Erik Rodner; Jeff Donahue; Brian Kulis; Kate Saenko

Abstract-1We address the problem of visual domain adaptation for transferring object models from one dataset or visual domain to another. We introduce a unified flexible model for both supervised and semi-supervised learning that allows us to learn transformations between domains. Additionally, we present two instantiations of the model, one for general feature adaptation/alignment, and one specifically designed for classification. First, we show how to extend metric learning methods for domain adaptation, allowing for learning metrics independent of the domain shift and the final classifier used. Furthermore, we go beyond classical metric learning by extending the method to asymmetric, category independent transformations. Our framework can adapt features even when the target domain does not have any labeled examples for some categories, and when the target and source features have different dimensions. Finally, we develop a joint learning framework for adaptive classifiers, which outperforms competing methods in terms of multi-class accuracy and scalability. We demonstrate the ability of our approach to adapt object recognition models under a variety of situations, such as differing imaging conditions, feature types, and codebooks. The experiments show its strong performance compared to previous approaches and its applicability to large-scale scenarios.

Collaboration


Dive into the Jeff Donahue's collaboration.

Top Co-Authors

Avatar

Trevor Darrell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy Hoffman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Tzeng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge