Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Froula is active.

Publication


Featured researches published by Jeff Froula.


PeerJ | 2015

MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities.

Dongwan D. Kang; Jeff Froula; Rob Egan; Zhong Wang

Grouping large genomic fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Because of the complex nature of these communities, existing metagenome binning methods often miss a large number of microbial species. In addition, most of the tools are not scalable to large datasets. Here we introduce automated software called MetaBAT that integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning. MetaBAT outperforms alternative methods in accuracy and computational efficiency on both synthetic and real metagenome datasets. It automatically forms hundreds of high quality genome bins on a very large assembly consisting millions of contigs in a matter of hours on a single node. MetaBAT is open source software and available at https://bitbucket.org/berkeleylab/metabat.


Nature Methods | 2010

Validation of two ribosomal RNA removal methods for microbial metatranscriptomics

Shaomei He; Omri Wurtzel; Kanwar Singh; Jeff Froula; Suzan Yilmaz; Susannah G. Tringe; Zhong Wang; Feng Chen; Erika Lindquist; Rotem Sorek; Philip Hugenholtz

The predominance of rRNAs in the transcriptome is a major technical challenge in sequence-based analysis of cDNAs from microbial isolates and communities. Several approaches have been applied to deplete rRNAs from (meta)transcriptomes, but no systematic investigation of potential biases introduced by any of these approaches has been reported. Here we validated the effectiveness and fidelity of the two most commonly used approaches, subtractive hybridization and exonuclease digestion, as well as combinations of these treatments, on two synthetic five-microorganism metatranscriptomes using massively parallel sequencing. We found that the effectiveness of rRNA removal was a function of community composition and RNA integrity for these treatments. Subtractive hybridization alone introduced the least bias in relative transcript abundance, whereas exonuclease and in particular combined treatments greatly compromised mRNA abundance fidelity. Illumina sequencing itself also can compromise quantitative data analysis by introducing a G+C bias between runs.


Genome Research | 2014

Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome

Weibing Shi; Christina D. Moon; Sinead C. Leahy; Dongwan Kang; Jeff Froula; Sandra Kittelmann; Christina Fan; Samuel Deutsch; Dragana Gagic; Henning Seedorf; William J. Kelly; Renee Atua; Carrie Sang; Priya Soni; Dong Li; Cesar S. Pinares-Patiño; J. C. McEwan; Peter H. Janssen; Feng Chen; Axel Visel; Zhong Wang; Graeme T. Attwood; Edward M. Rubin

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Nature Methods | 2017

Critical assessment of metagenome interpretation − a benchmark of computational metagenomics software

Alexander Sczyrba; Peter Hofmann; Peter Belmann; David Koslicki; Stefan Janssen; Johannes Droege; Ivan Gregor; Stephan Majda; Jessika Fiedler; Eik Dahms; Andreas Bremges; Adrian Fritz; Ruben Garrido-Oter; Tue Sparholt Jørgensen; Nicole Shapiro; Philip D. Blood; Alexey Gurevich; Yang Bai; Dmitrij Turaev; Matthew Z. DeMaere; Rayan Chikhi; Niranjan Nagarajan; Christopher Quince; Fernando Meyer; Monika Balvociute; Lars Hestbjerg Hansen; Søren J. Sørensen; Burton K H Chia; Bertrand Denis; Jeff Froula

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


Nature Methods | 2017

Critical Assessment of Metagenome Interpretation — a benchmark of metagenomics software

Alexander Sczyrba; Peter Hofmann; Peter Belmann; David Koslicki; Stefan Janssen; Johannes Dröge; Ivan Gregor; Stephan Majda; Jessika Fiedler; Eik Dahms; Andreas Bremges; Adrian Fritz; Ruben Garrido-Oter; Tue Sparholt Jørgensen; Nicole Shapiro; Philip D. Blood; Alexey Gurevich; Yang Bai; Dmitrij Turaev; Matthew Z. DeMaere; Rayan Chikhi; Niranjan Nagarajan; Christopher Quince; Fernando Meyer; Monika Balvočiūtė; Lars Hestbjerg Hansen; Søren J. Sørensen; Burton K H Chia; Bertrand Denis; Jeff Froula

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


Biotechnology and Bioengineering | 2014

Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation

Hailan Piao; Jeff Froula; Changbin Du; Tae-Wan Kim; Erik R. Hawley; Stefan Bauer; Zhong Wang; Nathalia Ivanova; Douglas S. Clark; Hans-Peter Klenk; Matthias Hess

Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this “genomic dark matter.” Due to the urgent need for additional carbohydrate‐active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context‐based approach can be used to assign function to genes that are otherwise categorized as “genomic dark matter” and to identify biomass‐degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. Biotechnol. Bioeng. 2014;111: 1550–1565.


bioRxiv | 2014

A robust statistical framework for reconstructing genomes from metagenomic data

Dongwan Don Kang; Jeff Froula; Rob Egan; Zhong Wang

We present software that reconstructs genomes from shotgun metagenomic sequences using a reference-independent approach. This method permits the identification of OTUs in large complex communities where many species are unknown. Binning reduces the complexity of a metagenomic dataset enabling many downstream analyses previously unavailable. In this study we developed MetaBAT, a robust statistical framework that integrates probabilistic distances of genome abundance with sequence composition for automatic binning. Applying MetaBAT to a human gut microbiome dataset identified 173 highly specific genomes bins including many representing previously unidentified species.


BMC Research Notes | 2017

Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep

Janine Kamke; Priya Soni; Yang Li; Siva Ganesh; William J. Kelly; Sinead C. Leahy; Weibing Shi; Jeff Froula; Edward M. Rubin; Graeme T. Attwood

BackgroundRuminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH4/kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype.MethodsRumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures.ResultsDetailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade.ConclusionsThis is the first report of bacterial type III secretion system genes being associated with high methane emissions in ruminants, and identifies these secretions systems as potential new targets for methane mitigation research. The effects of S. dextrinosolvens on the growth of rumen methanogens in co-cultures indicate that bacteria-methanogen interactions are important modulators of methane production in ruminant animals.


Nature Methods | 2017

Critical Assessment of Metagenome Interpretation[mdash]a benchmark of metagenomics software

Alexander Sczyrba; Peter Hofmann; Peter Belmann; David Koslicki; Stefan Janssen; Johannes Dröge; Ivan Gregor; Stephan Majda; Jessika Fiedler; Eik Dahms; Andreas Bremges; Adrian Fritz; Ruben Garrido-Oter; Tue Sparholt Jørgensen; Nicole Shapiro; Philip D. Blood; Alexey Gurevich; Yang Bai; Dmitrij Turaev; Matthew Z. DeMaere; Rayan Chikhi; Niranjan Nagarajan; Christopher Quince; Fernando Meyer; Monika Balvočiūtė; Lars Hestbjerg Hansen; Søren J. Sørensen; Burton K H Chia; Bertrand Denis; Jeff Froula

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


Lawrence Berkeley National Laboratory | 2010

Gap Closing/Finishing by Targeted Genomic Region Enrichment and Sequencing

Kanwar Singh; Jeff Froula; Hope Trice; Len A. Pennacchio; Feng Chen

Gap Closing/Finishing of draft genome assemblies is a labor and cost intensive process where several rounds of repetitious amplification and sequencing are required. Here we demonstrate a high throughput procedure where custom primers flanking gaps in draft genomes are designed. Primer libraries containing up to 4,000 unique pairs in independent droplets are merged with a fragmented genomic template. From this millions of picoliter scale droplets are formed, each one being the functional equivalent of an individual PCR reaction. The PCR products are concatenated and sequenced by Illumina which is then assembled and used for gap closure. Here we present an overall experimental strategy, primer design algorithm and initial results.

Collaboration


Dive into the Jeff Froula's collaboration.

Top Co-Authors

Avatar

Zhong Wang

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Edward M. Rubin

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Egan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Weibing Shi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge