Jeff Holderness
Montana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeff Holderness.
Animal Health Research Reviews | 2008
Mark A. Jutila; Jeff Holderness; Jill C. Graff; Jodi F. Hedges
Abstract Analysis of global gene expression in immune cells has provided unique insights into immune system function and response to infection. Recently, we applied microarray and serial analysis of gene expression (SAGE) techniques to the study of γδ T-cell function in humans and cattle. The intent of this review is to summarize the knowledge gained since our original comprehensive studies of bovine γδ T-cell subsets. More recently, we have characterized the effects of mucosal infection or treatment with microbial products or mitogens on gene expression patterns in sorted γδ and αβ T-cells. These studies provided new insights into the function of bovine γδ T-cells and led to a model in which response to pathogen-associated molecular patterns (PAMPs) induces ‘priming’ of γδ T-cells, resulting in more robust responses to downstream cytokine and/or antigen signals. PAMP primed γδ T-cells are defined by up-regulation of a select number of cytokines, including MIP1α and MIP1β, and by antigens such as surface IL2 receptor α (IL-2Rα) and CD69, in the absence of a prototypic marker for an activated γδ T-cell, IFN-γ. Furthermore, PAMP primed γδ T-cells are more capable of proliferation in response to IL-2 or IL-15 in the absence of antigen. PAMPs such as endotoxin, peptidoglycan and β-glucan are effective γδ T-cell priming agents, but the most potent antigen-independent priming agonists defined to date are condensed oligomeric tannins produced by some plants.
Journal of Immunology | 2007
Jeff Holderness; Larissa Jackiw; Emily Kimmel; Hannah Kerns; Miranda Radke; Jodi F. Hedges; Charles Petrie; Patrick McCurley; Pati M. Glee; Aiyappa Palecanda; Mark A. Jutila
γδ T cells are innate immune cells that participate in host responses against many pathogens and cancers. Recently, phosphoantigen-based drugs, capable of expanding γδ T cells in vivo, entered clinical trials with the goal of enhancing innate immune system functions. Potential shortcomings of these drugs include the induction of nonresponsiveness upon repeated use and the expansion of only the Vδ2 subset of human γδ T cells. Vδ1 T cells, the major tissue subset, are unaffected by phosphoantigen agonists. Using FACS-based assays, we screened primary bovine cells for novel γδ T cell agonists with activities not encompassed by the current treatments in an effort to realize the full therapeutic potential of γδ T cells. We identified γδ T cell agonists derived from the condensed tannin fractions of Uncaria tomentosa (Cat’s Claw) and Malus domestica (apple). Based on superior potency, the apple extract was selected for detailed analyses on human cells. The apple extract was a potent agonist for both human Vδ1 and Vδ2 T cells and NK cells. Additionally, the extract greatly enhanced phosphoantigen-induced γδ T cell expansion. Our analyses suggest that a tannin-based drug may complement the phosphoantigen-based drugs, thereby enhancing the therapeutic potential of γδ T cells.
PLOS ONE | 2011
Jeff Holderness; Igor A. Schepetkin; Brett Freedman; Liliya N. Kirpotina; Mark T. Quinn; Jodi F. Hedges; Mark A. Jutila
The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.
Journal of Medicinal Chemistry | 2009
Agostino Cilibrizzi; Mark T. Quinn; Liliya N. Kirpotina; Igor A. Schepetkin; Jeff Holderness; Richard D. Ye; Marie Josèphe Rabiet; Claudio Biancalani; Nicoletta Cesari; Alessia Graziano; Claudia Vergelli; Stefano Pieretti; Vittorio Dal Piaz; Maria Paola Giovannoni
Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC(50) = 0.6 microM) was the mixed FPR/FPRL1 agonist 14h.
PLOS Pathogens | 2012
Jerod A. Skyberg; MaryClare F. Rollins; Jeff Holderness; Nicole L. Marlenee; Igor A. Schepetkin; Andrew Goodyear; Steven W. Dow; Mark A. Jutila; David W. Pascual
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Annual Review of Animal Biosciences | 2013
Jeff Holderness; Jodi F. Hedges; Andrew Ramstead; Mark A. Jutila
γδ T cells are a functionally heterogeneous population and contribute to many early immune responses. The majority of their activity is described in humans and mice, but the immune systems of all jawed vertebrates include the γδ T cell lineage. Although some aspects of γδ T cells vary between species, critical roles in early immune responses are often conserved. Common features of γδ T cells include innate receptor expression, antigen presentation, cytotoxicity, and cytokine production. Herein we compare studies describing these conserved γδ T cell functions and other, potentially unique, functions. γδ T cells are well documented for their potential immunotherapeutic properties; however, these proposed therapies are often focused on human diseases and the mouse models thereof. This review consolidates some of these studies with those in other animals to provide a consensus for the current understanding of γδ T cell function across species.
International Immunopharmacology | 2009
Jill C. Graff; Emily Kimmel; Brett Freedman; Igor A. Schepetkin; Jeff Holderness; Mark T. Quinn; Mark A. Jutila; Jodi F. Hedges
Yamoa (ground bark of Funtumia elastica tree) is marketed and sold as a dietary supplement with anecdotal therapeutic effects in the treatment of asthma and hay fever. We determined that Yamoa and Yamoa-derived polysaccharides affected innate immunity, in part, by priming gammadelta T cells. Gene expression patterns in purified bovine gammadelta T cells and monocytes induced by Yamoa were similar to those induced by ultrapure lipopolysaccharide (uLPS). In the presence of accessory cells, Yamoa had priming effects that were similar to those of LPS on bovine and murine gammadelta T cells, but much more potent than LPS on human gammadelta T cells. The bioactive component of Yamoa was delineated to a complex polysaccharide fraction (Yam-I). Intraperitoneal injection of Yamoa and Yam-I in mice induced rapid increases in peritoneal neutrophils directed by changes in chemokine expression. In support of a unique agonist found in Yam-I, similar peritonitis responses were also observed in TLR4- and MyD88-deficient mice. Therapeutic treatment with Yam-I resulted in decreased bacterial counts in feces from mice with Salmonella enterica serotype typhimurium (ST)-induced enterocolitis. This characterization of the immune stimulatory properties of polysaccharides derived from Yamoa suggests mechanisms for the anecdotal positive effects of its ingestion and that these polysaccharides show potential for application in innate protection from disease.
Genes and Immunity | 2011
Katie F. Daughenbaugh; Jeff Holderness; Jill C. Graff; Jodi F. Hedges; Brett Freedman; Joel W. Graff; Mark A. Jutila
γδ T cells function in innate and adaptive immunity and are primed for secondary responses by procyanidin components of unripe apple peel (APP). In this study, we investigate the effects of APP and purified procyanidins on γδ T-cell gene expression. A microarray analysis was performed on bovine γδ T cells treated with APP; increases in transcripts encoding granulocyte-monocyte colony stimulating factor (GM-CSF), IL-8 and IL-17, but not markers of TCR stimulation such as IFNγ, were observed. Key responses were confirmed in human, mouse and bovine cells by reverse transcription-PCR and/or ELISA, indicating a conserved response to procyanidins. In vivo relevance of the cytokine response was shown in mice following intraperitoneal injection of APP, which induced production of CXCL1/KC and resulted in neutrophil influx to the blood and peritoneum. In the human T-cell line, MOLT-14, GM-CSF and IL-8 transcripts were increased and stabilized in cells treated with crude APP or purified procyanidins. The ERK1/2 MAPK pathway was activated in APP-treated cells, and necessary for transcript stabilization. Our data describe a unique γδ T-cell inflammatory response during procyanidin treatment and suggest that transcript stability mechanisms could account, at least in part, for the priming phenotype.
Antiviral Research | 2011
Emily Kimmel; Maria Jerome; Jeff Holderness; Deann Snyder; Sharon Kemoli; Mark A. Jutila; Jodi F. Hedges
Oligomeric procyanidins (OPCs) have been shown to have antiviral and immunostimulatory effects. OPCs isolated from non-ripe apple peel were tested for capacity to reduce dengue virus (DENV) titers. Similar to published accounts, OPCs exhibited direct antiviral activity. The possibility of enhanced innate immune protection was also tested by measuring and characterizing gene and protein expression induced by OPCs during DENV infection. Treatment of DENV-infected human PBMCs with OPCs decreased viral titers and affected the expression of critical innate antiviral immune products. OPCs enhanced expression of MXI and IFNB transcripts in high MOI DENV infected PBMC cultures, and phosphorylation of STAT2 in response to recombinant type I IFN (IFN I). During low MOI infection, addition of OPCs increased expression of STAT1 transcripts, MHC I and TNFα protein production. Thus, OPCs exhibited innate immune stimulation of cells in DENV-infected cultures and uninfected cells treated with IFN I. While OPCs from a number of sources are known to exhibit antiviral effects, their mechanisms are not precisely defined. The capacity of OPCs to increase sensitivity to IFN I could be broadly applicable to many viral infections and two separate antiviral mechanisms suggest that OPCs may represent a novel, robust antiviral therapy.
Veterinary Immunology and Immunopathology | 2016
Jodi F. Hedges; Jeff Holderness; Mark A. Jutila
Despite the availability of vaccines and antibiotics, viral, bacterial and parasite-induced intestinal and pulmonary diseases still cause significant losses to the livestock industry. Excepting improvements in calf survival due to predation, there have been only modest improvements in bovine calf survival since 1991. Strikingly, digestive and respiratory diseases still account for almost half of the non-predator deaths in calves. The innate immune system has evolved to rapidly recognize and respond to invasive microbial threats. Augmentation of innate immunity is a broad-spectrum, potent and non-specific alternative approach to effectively counter a microbial invasion. In recent years we have focused our research efforts on the development of effective and inexpensive adjuvant therapies for cattle that can be used to help mitigate infection. Unique in our approach to the development of the potential new treatments, is our focus on bovine γδ T cells, which are important lymphocytes of the innate immune system and of particular importance to ruminant immunological health. This review focuses on recent results obtained using two such adjuvant materials.