Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff J. Schoenau is active.

Publication


Featured researches published by Jeff J. Schoenau.


Communications in Soil Science and Plant Analysis | 1992

Use of ion exchange membranes in routine soil testing

P. Qian; Jeff J. Schoenau; W.Z. Huang

Abstract We developed and assessed a method for simultaneous extraction of plant available nitrogen, phosphorus, sulfur and potassium using anion and cation exchange membranes (ACEM). The technique was found to be highly suitable for routine soil testing due to its simplicity, rapidness and accuracy. The study compared the amount of nutrients extracted by ACEM with conventional chemical‐based extractants for P and K (0.5M NaHCO3) and N and S (0.001M CaCl2) for 135 soil samples representing a wide range of soil types in Western Canada. The nutrient availability predicted by ACEM was significantly correlated with the conventional methods. The correlation was not affected by the two different shaking times tested (one hour and 15 minutes), suggesting that extraction times as short as 15 minutes could be used in ACEM extraction. To evaluate the relative ability of ACEM and the conventional tests to predict actual nutrient availability to plants, canola plants were grown on soils in the growth chamber and actu...


Communications in Soil Science and Plant Analysis | 1991

Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus

Jeff J. Schoenau; W.Z. Huang

Abstract Three techniques were evaluated as soil P tests for western Canadian soils: anion‐exchange membrane (AEM), water, and bicarbonate extraction. The AEM, water, and bicarbonate‐extractable total P represented novel approaches to compare to the widely used bicarbonate‐extractable inorganic P (traditional Olsen) soil test. In a range of Saskatchewan soils, similar trends in predicted relative P availability were observed for AEM, water extraction, bicarbonate‐extractable total P, and bicarbonate‐extractable organic P. Correlations between soil test values revealed AEM and water‐extractable P to be most closely correlated, consistent with the similar manner of P removal in the two tests. Phosphorus availability, as predicted by the tests, was compared to actual P uptake by canola and wheat grown on 14 soils in a growth chamber experiment. P uptake by canola was highly correlated with AEM (r2 = 0.86–0.90), water (0.87 ‐0.94), and bicarbonate‐extractable total (0.91) and inorganic (0.92) P. Uptake of P b...


Nutrient Cycling in Agroecosystems | 1995

Assessing nitrogen mineralization from soil organic matter using anion exchange membranes

P. Qian; Jeff J. Schoenau

A simple method to assess differences in potential contribution of organic nitrogen mineralization to plant available N among soils may be useful in fertility research as well as routine soil testing. We deployed a method to assess mineralizable soil organic N using anion exchange membrane (AEM) burial. The method is based on a simple closed incubation system in which strips of AEM are buried directly in soil to adsorb NO3- released from organic matter. An index of mineralization was obtained using the amount of NO3- adsorbed on an AEM strip removed at the end of each incubation. The same incubation system but using 0.001M CaCl2 solution to extract NO3-N was used as the reference method. The mineralization indices obtained from both methods were compared with each other and with plant uptake. A total of 74 soils from across Saskatchewan were used in the study to provide a range of soil properties. Correlations between test values and N uptake by plants in two separate experiments showed the 2 week AEM incubation to be more closely correlated with plant N uptake (r2 = 0.86**** and 0.57****, respectively) than the reference method (r2 = 0.60**** and 0.48****, respectively).With this method, we were able to determine the influence of different tillage systems and landscape positions on mineralizable N. The results showed that the NO3- released from soil organic matter and accumulated on the AEM reflected the expected effect of three different tillage systems and two landscape positions on mineralizable N. Cropping systems with continuous alfalfa (Medicago sativa) showed higher N release from soil organic matter than a canola (Brassica napus)-lentil (Lens culinaris)-barley (Hordeum vulgare) rotation did. Higher N mineralization was found in the lower slope positions of the landscape where organic matter contents are highest. Direct burial of AEM appears to be a simple and effective method of including a measure of N mineralization in a soil test.


Canadian Journal of Soil Science | 1999

Seasonal trends in soil biochemical attributes: Effects of crop management on a Black Chernozem

C. A. Campbell; G. P. Lafond; V. O. Biederbeck; Guang Wen; Jeff J. Schoenau; D. Hahn

Knowledge of the response of soil biochemical attributes to crop management and growing season weather is important for assessing soil quality and fertility. Long-term (38–39 yr) crop rotations on a Black Chernozem at Indian Head, Saskatchewan, were sampled (0- to 7.5-cm depth) between early May and mid-October, 11 times in 1995 and 9 times in 1996. We assessed the effect of cropping frequency [fallow–wheat (Triticum aestivum L.) (F–W) vs. F–W–W, vs. Continuous (Cont) W], fertilizers (unfertilized vs. N + P applied), straw harvesting, legume green-manure (GM) in GM–W–W (unfertilized), and legume-grass hay (H) in F–W–W–H–H–H (unfertilized) systems. Changes in organic C and total N (OC, TN), microbial biomass C (MBC), light fraction C and N (LFC and LFN), mineralizable C and N (Cmin and Nmin), and water-soluble organic C (WSOC) were monitored. Organic C and TN were constant and unaffected by rotation phase during the season, but most of the other more labile soil biochemical attributes varied during the sea...


Canadian Journal of Soil Science | 1999

Seasonal trends in selected soil biochemical attributes: Effects of crop rotation in the semiarid prairie

C. A. Campbell; V. O. Biederbeck; Guang Wen; R. P. Zentner; Jeff J. Schoenau; D. Hahn

Measurements of seasonal changes in soil biochemical attributes can provide valuable information on how crop management and weather variables influence soil quality. We sampled soil from the 0- to 7.5-cm depth of two long-term crop rotations [continuous wheat (Cont W) and both phases of fallow-wheat (F–W)] at Swift Current, Saskatchewan, from early May to mid-October, 11 times in 1995 and 9 times in 1996. The soil is a silt loam, Orthic Brown Chernozem with pH 6.0, in dilute CaCl2. We monitored changes in organic C (OC) and total N (TN), microbial biomass C (MBC), light fraction C and N (LFC and LFN), mineralizable C (Cmin) and N (Nmin), and water-soluble organic C (WSOC). All biochemical attributes, except MBC, showed higher values for Cont W than for F–W, reflecting the historically higher crop residue inputs, less frequent tillage, and drier conditions of Cont W. Based on the seasonal mean values for 1996, we concluded that, after 29 yr, F–W has degraded soil organic C and total N by about 15% compared...


Canadian Journal of Soil Science | 2004

Effect of rate, frequency and incorporation of feedlot cattle manure on soil nitrogen availability, crop performance and nitrogen use efficiency in east-central Saskatchewan

S. P. Mooleki; Jeff J. Schoenau; J. L. Charles; Guang Wen

A study was initiated in 1996 in the Black Soil zone in east-central Saskatchewan to examine soil and crop response to application of feedlot cattle manure at different application rates, frequencies and incorporation timing in a sandy loam and loam soil. Three rates of feedlot cattle manure (approx. 100, 200 and 400 kg total N ha-1) were applied annually and under reduced frequency application regimes. Canola (Brassica napus, L.), spring wheat (Triticum aestivum, L.), hulless barley (Hordeum vulgare, L.) and canola were seeded in spring of 1997, 1998, 1999 and 2000, respectively. Pre-seeding available N (0–60 cm) increased with application rates. Annual application resulted in a linear increase in grain yield with application rates but had no effect on grain N concentration. Cumulative N use efficiency was low (7–10%) with no significant difference among treatments. Single application showed significant residual fertility benefit in the second year but not in the third year except at the high rate. Incor...


Canadian Journal of Soil Science | 2002

Effect of rate, frequency and method of liquid swine manure application on soil nitrogen availability, cropperformance and N use efficiency in east-central Saskatchewan

S. P. Mooleki; Jeff J. Schoenau; G. Hultgreen; Guang Wen; J. L. Charles

A study was initiated in the fall of 1996 in the Black soil zone in east-central Saskatchewan (parkland region) to examine the soil and crop response to application of liquid swine manure at different rates, frequencies and methods of application. Low, medium and high rates of liquid swine manure (equivalent to approximately 100, 200 and 400 kg total N ha-1, respectively) were applied annually and in reduced frequency applications using injection and broadcast/incorporated placement over a 4-yr period. Crops grown during this period were Argentine canola (Brassica napus L.) in 1997, hard red spring wheat (Triticum aestivum L.) in 1998, hulless barley (Hordeum vulgare L.) in 1999, and Argentine canola in 2000. Under an annual application regime, a significant elevation of pre-seeding available N in the 0–60 cm soil depth and increased grain yield and protein content with increasing application rates of liquid swine manure were observed. Under a reduced frequency application regime, elevation of pre-seeding...


Canadian Journal of Plant Science | 1997

Nitrogen contribution of field pea in annual cropping systems. 2. Total nitrogen benefit

H. J. Beckie; S. A. Brandt; Jeff J. Schoenau; C. A. Campbell; J. L. Henry; H. H. Janzen

The total nitrogen (N) benefit of field pea (Pisum sativum) to a succeeding non-legume crop was measured in a small plot experiment at Scott, Saskatchewan in the moist Dark Brown soil climatic zone, and in a small plot and landscape experiment near Melfort, Saskatchewan in the moist Black soil climatic zone from 1993 to 1995. The total N benefit was calculated as the difference in net N mineralized from soil plus N in the above- and below-ground crop residue between field pea and non-legume stubble-cropped plots over the growing season. Landscape slope position did not affect the total N benefit of field pea to a succeeding wheat crop, and preseeding tillage had an inconsistent effect on the total N benefit between years. The direct N benefit of field pea aboveground residue available to the succeeding crop in the landscape experiment was a minor component of the total N benefit, which averaged 25 kg N ha−1. The total N benefit was equivalent to the N residual effect, defined as the amount of fertilizer N...


Canadian Journal of Plant Science | 2005

A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains

S. S. Malhi; Jeff J. Schoenau; Cynthia A. Grant

In the Parkland region of the Canadian prairies, Canola (Brassica napus L. or Brassica rapa L.) is an important cash crop. Canola has a high requirement for sulphur (S). However, many soils in this region are deficient or potentially deficient in plant-available S for optimum canola seed yield. Application of sulphate-S at about 15–30 kg S ha-1 is usually sufficient to prevent S deficiency in canola on most of the S-deficient soils. Application of sulphate-S to canola at seeding time gives the highest increase in yield and S uptake. Deficiencies of S in canola plants can be prevented and/or corrected and seed yield improved with the use of sulphate-S fertilizers in the growing season. Application of sulphate-S at bolting can substantially restore seed yield, while an application at early flowering can moderately correct S deficiency damage. Side-banding is the most effective way to apply sulphate-S fertilizers to produce maximum seed yield and to prevent any damage to canola seedlings from seed-row placem...


Canadian Journal of Soil Science | 2003

Effect of tillage and crop rotations on the light fraction organic carbon and carbon mineralization in Chernozemic soils of Saskatchewan

B. C. Liang; B. G. McConkey; Jeff J. Schoenau; D. Curtin; C. A. Campbell; A. P. Moulin; G. P. Lafond; S. A. Brandt; H. Wang

Light fraction of soil organic C (LFOC) represents a major portion of labile soil organic C (SOC) and is a key attribute of soil quality. Soil respiration (Cmin) is an important index depicting the potential activity of the labile SOC. Six field experiments, varying in duration (8 to 25 yr), in location (Brown, Dark Brown and Black Chernozemic soil zones of Saskatchewan) and soil texture, were conducted to evaluate the impact of tillage and crop rotations on crop production and soil quality. We sampled the 0-7.5-cm depth of soil in these experiments to determine the treatment effects on LFOC, the proportion of LFOC in the SOC (LFOC/SOC) and Cmin. Increasing the frequency of summer fallow in cropping systems decreased the LFOC in all soil zones; it also decreased the proportion of LFOC in SOC and Cmin. Tillage had little impact on LFOC in the Brown and Dark Brown Chernozemic soil zones, although it significantly decreased LFOC in the Black Chernozemic soil zone. Thus, crop rotation had a greater impact on ...

Collaboration


Dive into the Jeff J. Schoenau's collaboration.

Top Co-Authors

Avatar

S. S. Malhi

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Ryan D. Hangs

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Peiyuan Qian

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric N. Johnson

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

G. P. Lafond

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Gourango Kar

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Peak

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge