Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jefferson Vallance is active.

Publication


Featured researches published by Jefferson Vallance.


Nature | 2011

Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro

Jason R. Spence; Christopher N. Mayhew; Scott A. Rankin; Matthew Kuhar; Jefferson Vallance; Kathryn Tolle; Elizabeth E. Hoskins; Vladimir V. Kalinichenko; Susanne I. Wells; Aaron M. Zorn; Noah F. Shroyer; James M. Wells

Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal ‘organoids’ consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.


Nature Medicine | 2014

An in vivo model of human small intestine using pluripotent stem cells

Carey L. Watson; Maxime M. Mahe; Jorge O. Múnera; Jonathan C. Howell; Nambirajan Sundaram; Holly M. Poling; Jamie I. Schweitzer; Jefferson Vallance; Christopher N. Mayhew; Ying Sun; Gregory A. Grabowski; Stacy R. Finkbeiner; Jason R. Spence; Noah F. Shroyer; James M. Wells; Michael A. Helmrath

Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes, for pharmacologic studies and as a potential resource for therapeutic transplant. To date, limited in vivo models exist for human intestine, all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here, we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme, both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme, as demonstrated by differentiated intestinal cell lineages (enterocytes, goblet cells, Paneth cells, tuft cells and enteroendocrine cells), presence of functional brush-border enzymes (lactase, sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore, transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection, suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology, disease and translational studies.


Journal of Clinical Investigation | 2015

Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage

Caitlyn W. Barrett; Vishruth K. Reddy; Sarah P. Short; Amy K. Motley; Mary K. Lintel; Amber Bradley; Tanner J. Freeman; Jefferson Vallance; Wei Ning; Bobak Parang; Shenika Poindexter; Barbara Fingleton; Xi Chen; Mary Kay Washington; Keith T. Wilson; Noah F. Shroyer; Kristina E. Hill; Raymond F. Burk; Christopher S. Williams

Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions.


Stem cell reports | 2015

Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

Shila Gilbert; Harini Nivarthi; Christopher N. Mayhew; Yuan-Hung Lo; Taeko K. Noah; Jefferson Vallance; Thomas Rülicke; Mathias Müller; Anil G. Jegga; Wenjuan Tang; Dongsheng Zhang; Michael A. Helmrath; Noah F. Shroyer; Richard Moriggl; Xiaonan Han

Summary Intestinal epithelial stem cells (IESCs) control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.


Pharmacology Research & Perspectives | 2015

Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses

Rongli Zhang; Shila Gilbert; Xinsheng Yao; Jefferson Vallance; Kris A. Steinbrecher; Richard Moriggl; Dongsheng Zhang; Madhu Eluri; Haifeng Chen; Huiqing Cao; Noah F. Shroyer; Lee A. Denson; Xiaonan Han

Dioscoreaceae, a kind of yam plant, has been recommended for treatment of chronic inflammatory conditions. However, the mechanisms are poorly defined. Methyl protodioscin (MPD) is one of the main bioactive components in Dioscoreaceae. Here, we aim to determine the mechanisms by which MPD ameliorates intestinal inflammation. Surgical intestinal specimens were collected from inflammatory bowel diseases (IBD) patients to perform organ culture. Experimental colitis was induced in mice by dextran sulfate sodium (DSS) or Citrobacter rodentium, and was then treated with MPD. NF‐κB activation, expression of mucosal pro‐inflammatory cytokines, disease severity, and epithelial proliferation/apoptosis were determined. Mouse crypts and Caco‐2 monolayers were cultured to observe the effect of MPD upon intestinal epithelial differentiation and barrier function. We found that MPD increased the percentage of survival from high‐dose DSS‐(4%) treated mice, and accelerated mucosal healing and epithelial proliferation in low‐dose DSS‐(2.5%) treated mice characterized by marked reduction in NF‐κB activation, pro‐inflammatory cytokines expression and bacterial translocation. Consistently, MPD protected colonic mucosa from C. rodentium‐induced colonic inflammation and bacterial colonization. In vitro studies showed that MPD significantly increased crypt formation and restored intestinal barrier dysfunction induced by pro‐inflammatory cytokines. In conclusion, MPD ameliorates the intestinal mucosal inflammation by modulating the intestinal immunity to enhance intestinal barrier differentiation. MPD could be an alternative for treating chronic intestinal inflammatory diseases.


Disease Models & Mechanisms | 2014

Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine

Sean R. Moore; Jill Pruszka; Jefferson Vallance; Eitaro Aihara; Toru Matsu-ura; Marshall H. Montrose; Noah F. Shroyer; Christian I. Hong

Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI) diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2), would diminish along a continuum from ex vivo intestinal organoids (epithelial ‘miniguts’), nontransformed mouse small intestinal epithelial (MSIE) cells and transformed human colorectal adenocarcinoma (Caco-2) cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC) mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM). Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for elucidating the role of circadian rhythms in GI stem cell dynamics, epithelial homeostasis and disease.


PLOS ONE | 2012

CRIM1 Complexes with ß-catenin and Cadherins, Stabilizes Cell-Cell Junctions and Is Critical for Neural Morphogenesis

Virgilio G. Ponferrada; Jieqing Fan; Jefferson Vallance; Shengyong Hu; Aygun Mamedova; Scott A. Rankin; Matthew Kofron; Aaron M. Zorn; Rashmi S. Hegde; Richard A. Lang

In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.


Inflammatory Bowel Diseases | 2015

IL-33 signaling protects from murine oxazolone colitis by supporting intestinal epithelial function

Amanda Waddell; Jefferson Vallance; Preston D. Moore; Amy T. Hummel; David Wu; Shiva Kumar Shanmukhappa; Lin Fei; M. Kay Washington; Phillip Minar; Lori A. Coburn; Susumu Nakae; Keith T. Wilson; Lee A. Denson; Simon P. Hogan; Michael J. Rosen

Background:IL-33, a member of the IL-1 cytokine family that signals through ST2, is upregulated in ulcerative colitis (UC); however, the role of IL-33 in colitis remains unclear. IL-33 augments type 2 immune responses, which have been implicated in UC pathogenesis. We sought to determine the role of IL-33 signaling in oxazolone (OXA) colitis, a type 2 cytokine-mediated murine model of UC. Methods:Colon mucosal IL-33 expression was compared between pediatric and adult UC and non-IBD patients using immunohistochemistry and real-time PCR. OXA colitis was induced in WT, IL-33−/−, and ST2−/− mice, and histopathology, cytokine levels, and goblet cells were assessed. Transepithelial resistance was measured across IL-33-treated T84 cell monolayers. Results:Colon mucosal IL-33 was increased in pediatric patients with active UC and in OXA colitis. IL-33−/− and ST2−/− OXA mice exhibited increased disease severity compared with WT OXA mice. OXA induced a mixed mucosal cytokine response, but few differences were observed between OXA WT and IL-33−/− or ST2−/− mice. Goblet cells were significantly decreased in IL-33−/− and ST2−/− OXA compared with WT OXA mice. IL-33 augmented transepithelial resistance in T84 cells, and this effect was blocked by the ERK1/2 inhibitor PD98,059. Conclusions:OXA colitis is exacerbated in IL-33−/− and ST2−/− mice. Increased mucosal IL-33 in human UC and murine colitis may be a homeostatic response to limit inflammation, potentially through effects on epithelial barrier function. Further investigation of IL-33 protective mechanisms would inform the development of novel therapeutic approaches.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Glutamine and alanyl-glutamine promote crypt expansion and mTOR signaling in murine enteroids

Sean R. Moore; Marjorie M. Guedes; Tiê Bezerra Costa; Jefferson Vallance; Elizabeth A. Maier; Kristina Betz; Eitaro Aihara; Maxime Mickael Mahe; Aldo Angelo Moreira Lima; Reinaldo B. Oriá; Noah F. Shroyer

L-glutamine (Gln) is a key metabolic fuel for intestinal epithelial cell proliferation and survival and may be conditionally essential for gut homeostasis during catabolic states. We show that L-alanyl-L-glutamine (Ala-Gln), a stable Gln dipeptide, protects mice against jejunal crypt depletion in the setting of dietary protein and fat deficiency. Separately, we show that murine crypt cultures (enteroids) derived from the jejunum require Gln or Ala-Gln for maximal expansion. Once expanded, enteroids deprived of Gln display a gradual atrophy of cryptlike domains, with decreased epithelial proliferation, but stable proportions of Paneth and goblet cell differentiation, at 24 h. Replenishment of enteroid medium with Gln selectively activates mammalian target of rapamycin (mTOR) signaling pathways, rescues proliferation, and promotes crypt regeneration. Gln deprivation beyond 48 h leads to destabilization of enteroids but persistence of EGFP-Lgr5-positive intestinal stem cells with the capacity to regenerate enteroids upon Gln rescue. Collectively, these findings indicate that Gln deprivation induces a reversible quiescence of intestinal stem cells and provides new insights into nutritional regulation of intestinal epithelial homeostasis.


Physiological Reports | 2017

Activation of TGF‐β activated kinase 1 promotes colon mucosal pathogenesis in inflammatory bowel disease

Zhiwei Liu; Fansheng Kong; Jefferson Vallance; Eleana Harmel-Laws; Surya Amarachintha; Kris A. Steinbrecher; Michael J. Rosen; Sandip Bhattacharyya

The etiology and mechanisms for inflammatory bowel disease (IBD) are incompletely known. Determination of new, clinically important mechanisms for intestinal inflammation is imperative for developing effective therapies to treat IBD. We sought to define a widespread mechanism for colon mucosal inflammation via the activation of TGF‐β activated Kinase 1 (TAK1), a central regulator of cellular inflammatory actions. Activation of TAK1 and the downstream inflammatory signaling mediators was determined in pediatric patients with ulcerative colitis (UC) or Crohns disease (CD) as well as in DSS‐induced and spontaneous IBD in mice. The role of TAK1 in facilitating intestinal inflammation in murine models of IBD was investigated by using (5Z)‐7‐Oxozeaenol, a highly selective pharmacological inhibitor of TAK1. We found hyper‐activation of TAK1 in patients with UC or CD and in murine models of IBD. Pharmacological inhibition of TAK1 prevented loss in body weight, disease activity, microscopic histopathology, infiltration of inflammatory cells in the colon mucosa, and elevated proinflammatory cytokine production in two murine models of IBD. We demonstrated that at the early phase of the disease activation of TAK1 is restricted in the epithelial cells. However, at a more advanced stage of the disease, TAK1 activation predominantly occurs in nonepithelial cells, especially in macrophages. These findings elucidate the activation of TAK1 as crucial in promoting intestinal inflammation. Thus, the TAK1 activation pathway may represent a suitable target to design new therapies for treating IBD in humans.

Collaboration


Dive into the Jefferson Vallance's collaboration.

Top Co-Authors

Avatar

Noah F. Shroyer

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James M. Wells

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael A. Helmrath

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Waddell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher N. Mayhew

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Howell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jorge O. Múnera

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith T. Wilson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lee A. Denson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge