Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffery A. Wood is active.

Publication


Featured researches published by Jeffery A. Wood.


Bioresource Technology | 2015

Deep eutectic solvent pretreatment and subsequent saccharification of corncob

Alessandra Procentese; Erin Johnson; Valerie Orr; Anna Garruto Campanile; Jeffery A. Wood; Antonio Marzocchella; Lars Rehmann

Ionic liquid (ILs) pretreatment of lignocellulosic biomass has attracted broad scientific interest, despite high costs, possible toxicity and energy intensive recycling. An alternative group of ionic solvents with similar physicochemical properties are deep eutectic solvents (DESs). Corncob residues were pretreated with three different DES systems: choline chloride and glycerol, choline chloride and imidazole, choline chloride and urea. The pretreated biomass was characterised in terms of lignin content, sugars concentration, enzymatic digestibility and crystallinity index. A reduction of lignin and hemicellulose content resulted in increased crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction could be reduced, depending on DES system and operating conditions. The subsequent enzymatic saccharification was enhanced in terms of rate and extent. A total of 41 g fermentable sugars (27 g glucose and 14 g xylose) could be recovered from 100g corncob, representing 76% (86% and 63%) of the initially available carbohydrates.


Langmuir | 2011

A New Method for the Preparation of Concentrated Translucent Polymer Nanolatexes from Emulsion Polymerization

Niels M. B. Smeets; Raul P. Moraes; Jeffery A. Wood; Timothy F. L. McKenna

A novel method for the preparation of concentrated, colloidally stable, translucent polymer nanolatexes is presented. Herein nanolatexes are obtained from emulsion polymerization, utilizing the potential of catalytic chain transfer to enhance the particle nucleation efficiency. Low amounts of emulsifier are required (<8% w/w based on monomer) while the nanolatexes concentration can be increased to 40% w/w. The nanolatexes are translucent in appearance, which was correlated to the average particle size and width of the particle size distribution using Mie theory. Increasing the nanolatex concentration was found to have no deteriorating effect on either the optical or colloidal properties. Preparing translucent nanolatexes via this method is advantageous, as the amount of emulsifier is significantly reduced without sacrificing the optical transparency or the high interfacial surface area of the polymer colloids.


Bioenergy Research | 2015

High-Throughput Screening of Inhibitory Compounds on Growth and Ethanol Production of Saccharomyces cerevisiae

Jeffery A. Wood; Valerie Orr; Luis Luque; Vivek Nagendra; Franco Berruti; Lars Rehmann

A high-throughput screening experiment to establish the individual and mixture effects of various common inhibitors found in lignocellulosic hydrolysates on the growth kinetics and ethanol production of Saccharomyces cerevisiae was carried out. Fermentations were performed utilizing 96-well microtiter plates to allow for carrying out fermentations in parallel, around which a central composite design of experiments was used to select inhibitor concentrations in each well. The individual and interaction effects of six common inhibitors were quantified using response surface fits of the growth rate, as determined by optical absorbance measurements and final cell density. For growth rate, 4-hydroxy-methylbenzaldehyde (phenol aldehyde) was found to be the strongest inhibitor of growth rate over the concentration range studied, while m-cresol (phenolic) had the least effect on growth rate and the largest inhibitory effect on final cell density. Both positive and negative interactions between inhibitors were found to affect both growth rate and maximum cell density. For example, both furfural and guaiacol when combined with m-cresol were found to have a positive effect on cell growth (less inhibitory), while guaiacol and m-cresol had a negative interaction with 4-hydroxy-methylbenzaldehyde. At all conditions studied, S. cerevisiae produced identical or higher ethanol yields compared to the inhibitor-free control fermentation which was attributed to the effects of physiological stress cause by the some inhibitors. These results quantify both the interactions of various inhibitors as well as their individual effects in a rapid and easy-to-perform experiment which can be easily expanded to include further inhibitors. Such a design can also be used for rapid and efficient screening of different pretreatments and feedstocks in the emerging field of lignocellulosic biofuels.


Journal of Physics: Condensed Matter | 2016

Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels.

Jeffery A. Wood; Anne M. Benneker; Rob G.H. Lammertink

A non-isothermal formulation of the Poisson-Nernst-Planck with Navier-Stokes equations is used to study the influence of heating effects in the form of Joule heating and viscous dissipation and imposed temperature gradients on a microchannel/nanochannel system. The system is solved numerically under various cases in order to determine the influence of temperature-related effects on ion-selectivity, flux and fluid flow profiles, as well as coupling between these phenomena. It is demonstrated that for a larger reservoir system, the effects of Joule heating and viscous dissipation only become relevant for higher salt concentrations and electric field strengths than are compatible with ion-selectivity due to Debye layer overlap. More interestingly, it is shown that using different temperature reservoirs can have a strong influence on ion-selectivity, as well as the induced electrohydrodynamic flows.


Journal of Chromatography A | 2014

Multi-variable operational characteristic studies of on-column oxidative protein refolding at high loading concentrations

Pegah Saremirad; Jeffery A. Wood; Yan Zhang; Ajay K. Ray

Chromatographic-based protein refolding techniques have proven to be superior to conventional dilution refolding methods, due to the higher loading concentration and simultaneous purification. Among these techniques, Size Exclusion Chromatography (SEC) has in particular been demonstrated as an effective method for refolding of variety of proteins. To date existing studies of protein refolding at high concentrations (>1mg/mL) in SEC have primarily been conducted as single factor studies, in which a single parameter is varied to assess impact on operating performance, which does not allow for determination of the interactions of different operating parameters and optimized operating conditions. In this work a multi-variable investigation of size exclusion protein refolding at high protein concentration using lysozyme as a model protein was performed, in order to quantify the interaction of factors and optimize performance. It was observed when l-arginine is used as an additive the refolding yield becomes independent of the protein concentration and refolding buffer pH, providing that a redox couple is used to assist the reformation of disulfide bridges. Furthermore, the pore accessibility for small molecules was reduced at the presence of this additive particularly at higher protein concentrations indicating slower removal of these molecules and a possible additional mechanism of aggregation prevention. Using the subsequent optimized refolding buffer, a refolding yield of more than 90% was obtained for up to 40mg/mL loading concentration of lysozyme which has only been reported for a urea gradient SEC (8-2M) with lower equilibration and elution flow rates due to high viscosity of buffer containing high concentrations of urea.


Journal of Applied Physics | 2012

Electric-field induced phase transitions of dielectric colloids: Impact of multiparticle effects

Jeffery A. Wood; Aristides Docoslis

The thermodynamic framework for predicting the electric-field induced fluid like-solid like phase transition of dielectric colloids developed by Khusid and Acrivos [Phys. Rev. E. 54, 5428 (1996)] is extended to examine the impact of multiscattering/multiparticle effects on the resulting phase diagrams. This was accomplished using effective permittivity models suitable both over the entire composition region for hard spheres (0≤c<cmax) and for multiple types of solid packing structures (random close-packed structure, FCC, BCC). The Sihvola-Kong model and the self-consistent permittivity model of Sen et al. [Geophysics 46, 781 (1981)] were used to generate the coexistence (slow phase transition) and spinodal (rapid phase transition) boundaries for the system and compared to assuming Maxwell-Garnett permittivity. It was found that for larger dielectric contrasts between medium and particle that the impact of accounting for multiscattering effects increased and that there was a significant shift in the result...


Langmuir | 2012

AC electrokinetic templating of colloidal particle assemblies: effect of electrohydrodynamic flows.

Jeffery A. Wood; Aristides Docoslis

The use of spatially nonuniform electric fields for the contact-free colloidal particle assembly into ordered structures of various length scales is a research area of great interest. In the present work, numerical simulations are undertaken in order to advance our understanding of the physical mechanisms that govern this colloidal assembly process and their relation to the electric field characteristics and colloidal system properties. More specifically, the electric-field driven assembly of colloidal silica (d(p) = 0.32 and 2 μm) in DMSO, a near index matching fluid, is studied numerically over a range of voltages and concentration by means of a continuum thermodynamic approach. The equilibrium (u(f) = 0) and nonequilibrium (u(f) ≠ 0) cases were compared to determine whether fluid motion had an effect on the shape and size of assemblies. It was found that the nonequilibrium case was substantially different versus the equilibrium case, in both size and shape of the assembled structure. This dependence was related to the relative magnitudes of the electric-field driven convective motion of particles versus the fluid velocity. Fluid velocity magnitudes on the order of mm/s were predicted for 0.32 μm particles at 1% initial solids content, and the induced fluid velocity was found to be larger at the same voltage/initial volume fraction as the particle size decreased, owing to a larger contribution from entropic forces.


Scientific Reports | 2016

Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale

Anne M. Benneker; Jeffery A. Wood; Peichun Amy Tsai; Rob G.H. Lammertink

Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode.


Langmuir | 2014

Geometric effects on non-DLVO forces: relevance for nanosystems.

Jeffery A. Wood; Lars Rehmann

In this paper, the surface element integration (SEI) method was used derive analytical force/potential versus distance profiles for two non-DLVO forces: Lewis acid-base and solvation forces. These forces are highly relevant in a variety of systems, from bacterial adhesion, nanoparticle suspension stability to atomic force microscopy (AFM) profiles. The SEI-derived expressions were compared with the more commonly utilized Derjaguin approximations in order to assess the effect of curvature on the resulting interaction for the test cases of sphere-flat plate and equally sized spheres. For acid-base interactions, the deviation was found to be significant for particles up to 40 nm in diameter for the conventionally used decay length (λ = 1 nm) for water. The resulting expressions show that accounting in curvature for acid-base interactions is important even for simple smooth geometric shapes, recovering the Derjaguin expression at smaller values of λ/R. These results allow for correction of the acid-base force/potential versus distance from the Derjaguin-derived expressions using simple functions of λ/R. Conversely, for the solvation force the deviation was far less significant due to the oscillatory nature of the potential damping out effects and the smaller order of magnitude range of the solvation decay length, indicating that for solvation forces the Derjaguin approximation is suitable for most conceivable cases.


Journal of Chromatography A | 2014

Oxidative protein refolding on size exclusion chromatography at high loading concentrations: fundamental studies and mathematical modeling.

Pegah Saremirad; Jeffery A. Wood; Yan Zhang; Ajay K. Ray

Size exclusion chromatography has been demonstrated as an effective method for refolding a variety of proteins. However, to date process development mainly relies on laboratory experimentation of individual factors. A robust model is essential for high-throughput process screening and optimization of systems to provide higher productivity and refolding yield. In this work, a detailed kinetic scheme of oxidative refolding of a model protein (lysozyme) has been investigated to predict the refolding results in SEC. Non-reactive native, quenched and equilibrium studies were conducted to obtain the model parameters for the species formed during refolding of denatured/reduced lysozyme. The model was tested in various operating conditions, such as: protein loading concentration, injection volume, flow rate and composition of refolding buffer with and without the use of l-arginine additive. An apparent two-state mechanism was found adequate to describe refolding of lysozyme on SEC for the operating condition tested in this work. Furthermore, using low concentration of l-arginine combined with urea as common aggregation suppressor additives showed insignificant change in kinetics of refolding of lysozyme on SEC. However, addition of l-arginine changed mass transfer properties of some of the species formed in refolding reaction which was considered in the model to accurately predict the result of refolding on SEC.

Collaboration


Dive into the Jeffery A. Wood's collaboration.

Top Co-Authors

Avatar

Rob G.H. Lammertink

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Anne M. Benneker

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Lars Rehmann

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Paul A. Charpentier

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Sander Haase

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Ajay K. Ray

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Pegah Saremirad

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge