Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffery L. Meier is active.

Publication


Featured researches published by Jeffery L. Meier.


Journal of Virology | 2001

Reactivation of the Human Cytomegalovirus Major Immediate-Early Regulatory Region and Viral Replication in Embryonal NTera2 Cells: Role of Trichostatin A, Retinoic Acid, and Deletion of the 21-Base-Pair Repeats and Modulator

Jeffery L. Meier

ABSTRACT Inactivity of the human cytomegalovirus (HCMV) major immediate-early regulatory region (MIERR), which is composed of promoter, enhancer, unique region, and modulator, is linked to lack of HCMV replication in latently infected cells and in other nonpermissive cell types, including human embryonal NTera2 carcinoma (NT2) cells. I refined the embryonal NT2 cell model to enable characterization of the unknown mechanistic basis for silencing of HCMV MIERR-dependent transcription and viral replication in nonpermissive cells. These infected NT2 cells contain nonreplicating viral genomes with electrophoretic mobility equivalent to a supercoiled, bacterial artificial chromosome of comparable molecular weight. MIERR-dependent transcription is minimal to negligible. Increasing the availability of positive-acting transcription factors by retinoic acid (RA) treatment after infection is largely insufficient in reactivating the MIERR. In contrast, trichostatin A (TSA), a histone deacetylase inhibitor, reactivates MIERR-dependent transcription. Contrary to prior findings produced from transfected MIERR segments, deletion of the 21-bp repeats and modulator from the MIERR in the viral genome does not relieve MIERR silencing. To demonstrate that MIERR silencing likely results from enhancer inactivity, I examined an HCMV with a heterologous MIERR promoter that is enhancer dependent but exempt from IE2 p86-mediated negative autoregulation. This heterologous promoter, like its neighboring native MIERR promoter, exhibits immediate-early transcriptional kinetics in fibroblasts. In embryonal NT2 cells, the heterologous MIERR promoter is transcriptionally inactive. This silence is relieved by TSA but not by RA. Remarkably, TSA-induced reactivation of MIERR-dependent transcription from quiescent viral genomes is followed by release of infectious virus. I conclude that a mechanism of active repression imposes a block to MIERR-dependent transcription and viral replication in embryonal NT2 cells. Because TSA overcomes the block, viral gene silencing may involve histone deacetylase-based modification of viral chromatin, which might account for the covalently closed circular conformation of quiescent HCMV genomes.


Journal of Virology | 2000

The Human Cytomegalovirus Major Immediate-Early Distal Enhancer Region Is Required for Efficient Viral Replication and Immediate-Early Gene Expression

Jeffery L. Meier; Jonathan A. Pruessner

ABSTRACT The human cytomegalovirus (HCMV) major immediate-early (MIE) genes, encoding IE1 p72 and IE2 p86, are activated by a complex enhancer region (base positions -65 to -550) that operates in a cell type- and differentiation-dependent manner. The expression of MIE genes is required for HCMV replication. Previous studies analyzing functions of MIE promoter-enhancer segments suggest that the distal enhancer region variably modifies MIE promoter activity, depending on cell type, stimuli, or state of differentiation. To further understand the mechanism by which the MIE promoter is regulated, we constructed and analyzed several different recombinant HCMVs that lack the distal enhancer region (-300 to -582, -640, or -1108). In human fibroblasts, the HCMVs without the distal enhancer replicate normally at high multiplicity of infection (MOI) but replicate poorly at low MOI in comparison to wild-type virus (WT) or HCMVs that lack the neighboring upstream unique region and modulator (-582 or -640 to -1108). The growth aberrancy was normalized after restoring the distal enhancer in a virus lacking this region. For HCMVs without a distal enhancer, the impairment in replication at low MOI corresponds to a deficiency in production of MIE RNAs compared to WT or virus lacking the unique region and modulator. An underproduction of viral US3 RNA was also evident at low MOI. Whether lower production of IE1 p72 and IE2 p86 causes a reduction in expression of the immediate-early (IE) class US3 gene remains to be determined. We conclude that the MIE distal enhancer region possesses a mechanism for augmenting viral IE gene expression and genome replication at low MOI, but this regulatory function is unnecessary at high MOI.


Journal of Virology | 2002

Requirement of Multiple cis-Acting Elements in the Human Cytomegalovirus Major Immediate-Early Distal Enhancer for Viral Gene Expression and Replication

Jeffery L. Meier; Mike Keller; James J. McCoy

ABSTRACT We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.


Journal of Virology | 2009

Comparisons of CD8+ T cells specific for human immunodeficiency virus, hepatitis C virus, and cytomegalovirus reveal differences in frequency, immunodominance, phenotype, and interleukin-2 responsiveness.

Prasanna Jagannathan; Christine M. Osborne; Cassandra Royce; Maura Manion; John C. Tilton; Li Li; Steven H. Fischer; Claire W. Hallahan; Julia A. Metcalf; Mary McLaughlin; Matthew R. Pipeling; John F. McDyer; Thomas J. Manley; Jeffery L. Meier; John D. Altman; Laura Hertel; Richard T. Davey; Mark Connors; Stephen A. Migueles

ABSTRACT To better understand the components of an effective immune response to human immunodeficiency virus (HIV), the CD8+ T-cell responses to HIV, hepatitis C virus (HCV), and cytomegalovirus (CMV) were compared with regard to frequency, immunodominance, phenotype, and interleukin-2 (IL-2) responsiveness. Responses were examined in rare patients exhibiting durable immune-mediated control over HIV, termed long-term nonprogressors (LTNP) or elite controllers, and patients with progressive HIV infection (progressors). The magnitude of the virus-specific CD8+ T-cell response targeting HIV, CMV, and HCV was not significantly different between LTNP and progressors, even though their capacity to proliferate to HIV antigens was preserved only in LTNP. In contrast to HIV-specific CD8+ T-cell responses of LTNP, HLA B5701-restricted responses within CMV pp65 were rare and did not dominate the total CMV-specific response. Virus-specific CD8+ T cells were predominantly CD27+45RO+ for HIV and CD27−45RA+ for CMV; however, these phenotypes were highly variable and heavily influenced by the degree of viremia. Although IL-2 induced significant expansions of CMV-specific CD8+ T cells in LTNP and progressors by increasing both the numbers of cells entering the proliferating pool and the number of divisions, the proliferative capacity of a significant proportion of HIV-specific CD8+ T cells was not restored with exogenous IL-2. These results suggest that immunodominance by HLA B5701-restricted cells is specific to HIV infection in LTNP and is not a feature of responses to other chronic viral infections. They also suggest that poor responsiveness to IL-2 is a property of HIV-specific CD8+ T cells of progressors that is not shared with responses to other viruses over which immunologic control is maintained.


Journal of Virology | 2007

Reversal of Human Cytomegalovirus Major Immediate-Early Enhancer/Promoter Silencing in Quiescently Infected Cells via the Cyclic AMP Signaling Pathway

Mike Keller; Allen W. Wu; Janet I. Andrews; Patrick W. McGonagill; Eric E. Tibesar; Jeffery L. Meier

ABSTRACT The human cytomegalovirus (HCMV) major immediate-early (MIE) enhancer contains five functional cyclic AMP (cAMP) response elements (CRE). Because the CRE in their native context do not contribute appreciably to MIE enhancer/promoter activity in lytically infected human fibroblasts and NTera2 (NT2)-derived neurons, we postulated that they might have a role in MIE enhancer/promoter reactivation in quiescently infected cells. Here, we show that stimulation of the cAMP signaling pathway by treatment with forskolin (FSK), an adenylyl cyclase activator, greatly alleviates MIE enhancer/promoter silencing in quiescently infected NT2 neuronal precursors. The effect is immediate, independent of de novo protein synthesis, associated with the phosphorylation of ATF-1 serine 63 and CREB serine 133, dependent on protein kinase A (PKA) and the enhancers CRE, and linked to viral-lytic-cycle advancement. Coupling of FSK treatment with the inhibition of either histone deacetylases or protein synthesis synergistically activates MIE gene expression in a manner suggesting that MIE enhancer/promoter silencing is optimally relieved by an interplay of multiple regulatory mechanisms. In contrast, MIE enhancer/promoter silence is not overcome by stimulation of the gamma interferon (IFN-γ) signaling pathway, despite the enhancer having two IFN-γ-activated-site-like elements. We conclude that stimulation of the cAMP/PKA signaling pathway drives CRE-dependent MIE enhancer/promoter activation in quiescently infected cells, thus exposing a potential mode of regulation in HCMV reactivation.


Journal of Virology | 2009

Breaking Human Cytomegalovirus Major Immediate-Early Gene Silence by Vasoactive Intestinal Peptide Stimulation of the Protein Kinase A-CREB-TORC2 Signaling Cascade in Human Pluripotent Embryonal NTera2 Cells

Jinxiang Yuan; Xiaoqiu Liu; Allen W. Wu; Patrick W. McGonagill; Mike Keller; Courtney S. Galle; Jeffery L. Meier

ABSTRACT The triggering mechanisms underlying reactivation of human cytomegalovirus (HCMV) in latently infected persons are unclear. During latency, HCMV major immediate-early (MIE) gene expression breaks silence to initiate viral reactivation. Using quiescently HCMV-infected human pluripotent embryonal NTera2 cells (NT2) to model HCMV reactivation, we show that vasoactive intestinal peptide (VIP), an immunomodulatory neuropeptide, immediately and dose-dependently (1 to 500 nM) activates HCMV MIE gene expression. This response requires the MIE enhancer cyclic AMP response elements (CRE). VIP quickly elevates CREB Ser133 and ATF-1 Ser63 phosphorylation levels, although the CREB Ser133 phosphorylation level is substantial at baseline. VIP does not change the level of HCMV genomes in nuclei, Oct4 (pluripotent cell marker), or hDaxx (cellular repressor of HCMV gene expression). VIP-activated MIE gene expression is mediated by cellular protein kinase A (PKA), CREB, and TORC2. VIP induces PKA-dependent TORC2 Ser171 dephosphorylation and nuclear entry, which likely enables MIE gene activation, as TORC2 S171A (devoid of Ser171 phosphorylation) exhibits enhanced nuclear entry and desilences the MIE genes in the absence of VIP stimulation. In conclusion, VIP stimulation of the PKA-CREB-TORC2 signaling cascade activates HCMV CRE-dependent MIE gene expression in quiescently infected NT2 cells. We speculate that neurohormonal stimulation via this signaling cascade is a possible means for reversing HCMV silence in vivo.


Journal of Virology | 2004

Cellular Repressor Inhibits Human Cytomegalovirus Transcription from the UL127 Promoter

Philip Lashmit; Christopher A. Lundquist; Jeffery L. Meier; Mark F. Stinski

ABSTRACT The region of the human cytomegalovirus (HCMV) genome between the UL127 promoter and the major immediate-early (MIE) enhancer is referred to as the unique region. The role of this region during a viral infection is not known. In wild-type HCMV-infected permissive fibroblasts, there is no transcription from the UL127 promoter at any time during productive infection. Our investigators previously reported that the region upstream of the UL127 TATA box repressed expression from the UL127 promoter (C. A. Lundquist et al., J. Virol. 73:9039-9052, 1999). The region was reported to contain functional NF1 DNA binding sites (L. Hennighausen and B. Fleckenstein, EMBO J. 5:1367-1371, 1986). Sequence analysis of this region detected additional consensus binding sites for three transcriptional regulatory proteins, FoxA (HNF-3), suppressor of Hairy wing, and CAAT displacement protein. The cis-acting elements in the unique region prevented activation of the early UL127 promoter by the HCMV MIE proteins. In contrast, deletion of the region permitted very high activation of the UL127 promoter by the viral MIE proteins. Mutation of the NF1 sites had no effect on the basal activity of the promoter. To determine the role of the other sites in the context of the viral genome, recombinant viruses were generated in which each putative repressor site was mutated and the effect on the UL127 promoter was analyzed. Mutation of the putative Fox-like site resulted in a significant increase in expression from the viral early UL127 promoter. Insertion of wild-type Fox-like sites between the HCMV immediate-early (IE) US3 TATA box and the upstream NF-κB-responsive enhancer (R2) also significantly decreased gene expression, but mutated Fox-like sites did not. The wild-type Fox-like site inhibits activation of a viral IE enhancer-containing promoter. Cellular protein, which is present in uninfected or infected permissive cell nuclear extracts, binds to the wild-type Fox-like site but not to mutated sites. Reasons for repression of UL127 gene transcription during productive infection are discussed.


The Journal of Infectious Diseases | 2012

Higher Antigen Content Improves the Immune Response to 2009 H1N1 Influenza Vaccine in HIV-Infected Adults: A Randomized Clinical Trial

Hana M. El Sahly; Charles E. L. B. Davis; Karen L. Kotloff; Jeffery L. Meier; Patricia L. Winokur; Anna Wald; Christine Johnston; Sarah L. George; Rebecca C. Brady; Corinne Lehmann; Abbie Stokes-Riner; Wendy A. Keitel

BACKGROUND The immunogenicity of a high hemagglutinin (HA) dose or a second dose of influenza vaccine in human immunodeficiency virus (HIV)-infected individuals has not been fully explored. METHODS One hundered ninety-two HIV-infected individuals aged 18-64 years were stratified by CD4 cell count (<200 cells/mL or ≥200 cells/mL) and randomized to receive 2 doses of 15 μg or 30 μg HA 2009 H1N1 vaccine 21 days apart. Hemagglutination inhibition (HAI) and microneutralization (MN) antibodies were measured on days 0, 10, 21, 31, 42, and 201. RESULTS Recipients of 30 μg HA had significantly higher HAI geometric mean titers (GMTs), compared with recipients of 15 μg HA on days 10 (139.0 vs 51.9; P = .01), 21 (106.7 vs 51.9; P = .001), and 31 (130.0 vs 73.7; P = .03) but not on days 42 (91.8 vs 61.6; P = .11) and 201 (43.0 vs 27.0; P = .08). When analyzed by CD4 cell count stratum, HAI GMTs were significantly higher among 30 μg HA recipients than among 15 μg HA in the CD4 cell count <200 cells/mL stratum on days 21 and 31 and the MN GMTs on days 10, 21, 31, and 42 (P < .05). In the CD4 cell count ≥200 cells/mL stratum, MN GMTs were significantly higher among recipients of 30 μg HA than among recipients of 15 μg HA on day 10 (P = .03). CONCLUSION Increasing the HA dose of the 2009 H1N1 vaccine improves the vaccines immunogenicity in HIV-infected individuals. CLINICAL TRIALS REGISTRATION NCT00992433.


Journal of Virology | 2010

Phorbol Ester-Induced Human Cytomegalovirus Major Immediate-Early (MIE) Enhancer Activation through PKC-Delta, CREB, and NF-κB Desilences MIE Gene Expression in Quiescently Infected Human Pluripotent NTera2 Cells

Xiaoqiu Liu; Jinxiang Yuan; Allen W. Wu; Patrick W. McGonagill; Courtney S. Galle; Jeffery L. Meier

ABSTRACT The ways in which human cytomegalovirus (HCMV) major immediate-early (MIE) gene expression breaks silence from latency to initiate the viral replicative cycle are poorly understood. A delineation of the signaling cascades that desilence the HCMV MIE genes during viral quiescence in the human pluripotent N-Tera2 (NT2) cell model provides insight into the molecular mechanisms underlying HCMV reactivation. In this model, we show that phorbol 12-myristate 13-acetate (PMA) immediately activates the expression of HCMV MIE RNA and protein and greatly increases the MIE-positive (MIE+) NT2 cell population density; levels of Oct4 (pluripotent cell marker) and HCMV genome penetration are unchanged. Decreasing PKC-delta activity (pharmacological, dominant-negative, or RNA interference [RNAi] method) attenuates PMA-activated MIE gene expression. MIE gene activation coincides with PKC-delta Thr505 phosphorylation. Mutations in MIE enhancer binding sites for either CREB (cyclic AMP [cAMP] response element [CRE]) or NF-κB (κB) partially block PMA-activated MIE gene expression; the ETS binding site is negligibly involved, and κB does not confer MIE gene activation by vasoactive intestinal peptide (VIP). The PMA response is also partially attenuated by the RNAi-mediated depletion of the CREB or NF-κB subunit RelA or p50; it is not diminished by TORC2 knockdown or accompanied by TORC2 dephosphorylation. Mutations in both CRE and κB fully abolish PMA-activated MIE gene expression. Thus, PMA stimulates a PKC-delta-dependent, TORC2-independent signaling cascade that acts through cellular CREB and NF-κB, as well as their cognate binding sites in the MIE enhancer, to immediately desilence HCMV MIE genes. This signaling cascade is distinctly different from that elicited by VIP.


PLOS Pathogens | 2014

Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency.

Verity G. Kew; Jinxiang Yuan; Jeffery L. Meier; Matthew B. Reeves

The devastating clinical consequences associated with human cytomegalovirus (HCMV) infection and reactivation underscores the importance of understanding triggers of HCMV reactivation in dendritic cells (DC). Here we show that ERK-mediated reactivation is dependent on the mitogen and stress activated kinase (MSK) family. Furthermore, this MSK mediated response is dependent on CREB binding to the viral major immediate early promoter (MIEP). Specifically, CREB binding to the MIEP provides the target for MSK recruitment. Importantly, MSK mediated phosphorylation of histone H3 is required to promote histone de-methylation and the subsequent exit of HCMV from latency. Taken together, these data suggest that CREB binding to the MIEP is necessary for the recruitment of the kinase activity of MSKs to initiate the chromatin remodelling at the MIEP required for reactivation. Thus the importance of CREB during HCMV reactivation is to promote chromatin modifications conducive for viral gene expression as well as acting as a classical transcription factor. Clearly, specific inhibition of this interaction between CREB and MSKs could provide a strategy for therapeutic intervention.

Collaboration


Dive into the Jeffery L. Meier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney S. Galle

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark F. Stinski

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Wald

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Lehmann

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hana M. El Sahly

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge