Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffery W. Kelly is active.

Publication


Featured researches published by Jeffery W. Kelly.


Current Opinion in Structural Biology | 1998

The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways

Jeffery W. Kelly

The conformational change hypothesis postulates that tertiary structural changes under partially denaturing conditions convert one of 17 normally soluble and functional human proteins into an alternative conformation that subsequently undergoes self-assembly into an amyloid fibril, the putative causative agent in amyloid disease. This hypothesis is consistent with Anfinsens view that the tertiary structure of a protein is determined both by its sequence and the aqueous environment; the latter does not always favor the normally folded state. Unlike sickle cell hemoglobin assembly, where owing to a surface mutation, hemoglobin polymerizes in its normally folded conformation, amyloid proteins self-assemble as a result of the formation of an alternative tertiary structure-a conformational intermediate formed under partially denaturing conditions. The pathway by which an amyloidogenic protein assembles into amyloid fibrils appears to involve quaternary structural intermediates that assemble into increasingly complex quaternary structures, including amyloid protofilaments, which ultimately assemble into amyloid fibrils. Several recent studies have discussed the multi-step assembly pathway(s) characterizing amyloid fibril formation.


Science | 2006

Opposing Activities Protect Against Age-Onset Proteotoxicity

Ehud Cohen; Jan Bieschke; Rhonda M. Perciavalle; Jeffery W. Kelly; Andrew Dillin

Aberrant protein aggregation is a common feature of late-onset neurodegenerative diseases, including Alzheimers disease, which is associated with the misassembly of the Aβ1-42 peptide. Aggregation-mediated Aβ1-42 toxicity was reduced in Caenorhabiditis elegans when aging was slowed by decreased insulin/insulin growth factor–1–like signaling (IIS). The downstream transcription factors, heat shock factor 1, and DAF-16 regulate opposing disaggregation and aggregation activities to promote cellular survival in response to constitutive toxic protein aggregation. Because the IIS pathway is central to the regulation of longevity and youthfulness in worms, flies, and mammals, these results suggest a mechanistic link between the aging process and aggregation-mediated proteotoxicity.


Nature | 2003

Therapeutic approaches to protein-misfolding diseases.

Fred E. Cohen; Jeffery W. Kelly

Several sporadic and genetic diseases are caused by protein misfolding. These include cystic fibrosis and other devastating diseases of childhood as well as Alzheimers, Parkinsons and other debilitating maladies of the elderly. A unified view of the molecular and cellular pathogenesis of these conditions has led to the search for chemical chaperones that can slow, arrest or revert disease progression. Molecules are now emerging that link our biophysical insights with our therapeutic aspirations.


Current Opinion in Structural Biology | 1996

Alternative conformations of amyloidogenic proteins govern their behavior

Jeffery W. Kelly

Recent publications strongly support the hypothesis that conformational changes in amyloidogenic proteins lead to amyloid fibril formation and cause disease. Biophysical studies on several amyloidogenic proteins provide insights into the conformational changes required for fibrilogenesis. In addition, newly available moderate to high resolution structural studies are bringing us closer to understanding the structure of amyloid.


PLOS Biology | 2005

Functional Amyloid Formation within Mammalian Tissue

Douglas M. Fowler; Atanas V. Koulov; Christelle Alory-Jost; Michael S. Marks; William E. Balch; Jeffery W. Kelly

Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Chemical chaperones increase the cellular activity of N370S β-glucosidase: A therapeutic strategy for Gaucher disease

Anu R. Sawkar; Wei-Chieh Cheng; Ernest Beutler; Chi-Huey Wong; William E. Balch; Jeffery W. Kelly

Gaucher disease is a lysosomal storage disorder caused by deficient lysosomal β-glucosidase (β-Glu) activity. A marked decrease in enzyme activity results in progressive accumulation of the substrate (glucosylceramide) in macrophages, leading to hepatosplenomegaly, anemia, skeletal lesions, and sometimes CNS involvement. Enzyme replacement therapy for Gaucher disease is costly and relatively ineffective for CNS involvement. Chemical chaperones have been shown to stabilize various proteins against misfolding, increasing proper trafficking from the endoplasmic reticulum. We report herein that the addition of subinhibitory concentrations (10 μM) of N-(n-nonyl)deoxynojirimycin (NN-DNJ) to a fibroblast culture medium for 9 days leads to a 2-fold increase in the activity of N370S β-Glu, the most common mutation causing Gaucher disease. Moreover, the increased activity persists for at least 6 days after the withdrawal of the putative chaperone. The NN-DNJ chaperone also increases WT β-Glu activity, but not that of L444P, a less prevalent Gaucher disease variant. Incubation of isolated soluble WT enzyme with NN-DNJ reveals that β-Glu is stabilized against heat denaturation in a dose-dependent fashion. We propose that NN-DNJ chaperones β-Glu folding at neutral pH, thus allowing the stabilized enzyme to transit from the endoplasmic reticulum to the Golgi, enabling proper trafficking to the lysosome. Clinical data suggest that a modest increase in β-Glu activity may be sufficient to achieve a therapeutic effect.


Cell | 2007

Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection

Jan Münch; Elke Rücker; Ludger Ständker; Knut Adermann; Christine Goffinet; Michael Schindler; Steffen Wildum; Raghavan Chinnadurai; Devi Rajan; Anke Specht; Guillermo Giménez-Gallego; Pedro Cuevas Sánchez; Douglas M. Fowler; Atanas V. Koulov; Jeffery W. Kelly; Walther Mothes; Jean-Charles Grivel; Leonid Margolis; Oliver T. Keppler; Wolf Georg Forssmann; Frank Kirchhoff

Sexual intercourse is the major route of HIV transmission. To identify endogenous factors that affect the efficiency of sexual viral transmission, we screened a complex peptide/protein library derived from human semen. We show that naturally occurring fragments of the abundant semen marker prostatic acidic phosphatase (PAP) form amyloid fibrils. These fibrils, termed Semen-derived Enhancer of Virus Infection (SEVI), capture HIV virions and promote their attachment to target cells, thereby enhancing the infectious virus titer by several orders of magnitude. Physiological concentrations of SEVI amplified HIV infection of T cells, macrophages, ex vivo human tonsillar tissues, and transgenic rats in vivo, as well as trans-HIV infection of T cells by dendritic or epithelial cells. Amyloidogenic PAP fragments are abundant in seminal fluid and boost semen-mediated enhancement of HIV infection. Thus, they may play an important role in sexual transmission of HIV and could represent new targets for its prevention.


Cell | 2009

Reduced IGF-1 signaling delays age-associated proteotoxicity in mice.

Ehud Cohen; Johan Paulsson; Pablo Blinder; Tal Burstyn-Cohen; Deguo Du; Gabriela Estepa; Anthony Adame; Hang M. Pham; Martin Holzenberger; Jeffery W. Kelly; Eliezer Masliah; Andrew Dillin

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimers disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimers model mice and discovered that these animals are protected from Alzheimers-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Abeta leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Abeta oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Abeta toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimers disease therapy.The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimers disease-linked human peptide, Aβ. We reduced IGF signaling in Alzheimers model mice and discovered that these animals are protected from Alzheimers-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Aβ leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Aβ oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Aβ toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimers disease therapy.


Cell | 2008

Chemical and Biological Approaches Synergize to Ameliorate Protein-Folding Diseases

Ting Wei Mu; Derrick Sek Tong Ong; Ya Juan Wang; William E. Balch; John R. Yates; Laura Segatori; Jeffery W. Kelly

Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the formers ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade.

Christine Bulawa; Stephen Connelly; M Devit; Lei Wang; C Weigel; James Fleming; Jeff Packman; Evan T. Powers; R.L. Wiseman; Ted R. Foss; Ian A. Wilson; Jeffery W. Kelly; Richard Labaudiniere

The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A–retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (Kds ∼2 nM and ∼200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.

Collaboration


Dive into the Jeffery W. Kelly's collaboration.

Top Co-Authors

Avatar

Evan T. Powers

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

R. Luke Wiseman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

William E. Balch

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen Connelly

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hilal A. Lashuel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Plate

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Steven M. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sungwook Choi

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge