Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey A. Mertens is active.

Publication


Featured researches published by Jeffrey A. Mertens.


Biotechnology for Biofuels | 2013

Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24

Ronald E. Hector; Bruce S. Dien; Michael A. Cotta; Jeffrey A. Mertens

BackgroundSaccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation.ResultsFour XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain’s ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM.ConclusionThis study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.


Proteome Science | 2006

High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

Stephen R. Hughes; Steven B. Riedmuller; Jeffrey A. Mertens; Xin-Liang Li; Kenneth M. Bischoff; Nasib Qureshi; Michael A. Cotta; Philip J. Farrelly

BackgroundThe field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins.ResultsWe used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved CelF mutants and corresponding optimized clones in expression-ready plasmids.ConclusionThe multiplex method using an integrated automated platform for high-throughput screening in a functional proteomic assay allows rapid identification of plasmids containing optimized clones ready for use in subsequent applications including transformations to produce improved strains or cell lines.


Plasmid | 2009

Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system

Stephen R. Hughes; David E. Sterner; Kenneth M. Bischoff; Ronald E. Hector; Patrick F. Dowd; Nasib Qureshi; Sookie S. Bang; Nicole Grynaviski; Tania Chakrabarty; Eric T. Johnson; Bruce S. Dien; Jeffrey A. Mertens; Robert J. Caughey; Siqing Liu; Tauseef R. Butt; Joshua LaBaer; Michael A. Cotta; Joseph O. Rich

A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.


Bioresource Technology | 2012

Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass.

Christopher J. Barr; Jeffrey A. Mertens; Constance A. Schall

Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with largely amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH), an endoxylanase (EX) and an acetylxylan esterase (AXE). β-Xylosidase (βX) from Selenomonas ruminantium and a commercial β-glucosidase (βG) from Novozyme 188 were admixed with the A. nidulans enzymes. Statistical analysis indicates that βG and βX activities are significant for both glucose and xylose yields for the two substrates. EG is a significant factor for glucan hydrolysis while EX is significant for xylan hydrolysis of the substrates. The CBH, which has activity on crystalline cellulose and negligible activity on amorphous cellulose, was not a significant factor in glucan hydrolysis. EX is significant in glucan hydrolysis for poplar. The addition of AXE significantly improves xylan hydrolysis for poplar but not switchgrass.


Journal of Insect Science | 2008

Molecular Cloning and Expression of Three Polygalacturonase cDNAs from the Tarnished Plant Bug, Lygus lineolaris

Margaret Louise Allen; Jeffrey A. Mertens

Abstract Three unique cDNAs encoding putative polygalacturonase enzymes were isolated from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). The three nucleotide sequences were dissimilar to one another, but the deduced amino acid sequences were similar to each other and to other polygalacturonases from insects, fungi, plants, and bacteria. Four conserved segments characteristic of polygalacturonases were present, but with some notable semiconservative substitutions. Two of four expected disulfide bridge—forming cysteine pairs were present. All three inferred protein translations included predicted signal sequences of 17 to 20 amino acids. Amplification of genomic DNA identified an intron in one of the genes, Llpg1, in the 5′ untranslated region. Semiquantitative RT-PCR revealed expression in all stages of the insect except the eggs. Expression in adults, male and female, was highly variable, indicating a family of highly inducible and diverse enzymes adapted to the generalist polyphagous nature of this important pest.


Yeast | 2011

Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.

Ronald E. Hector; Jeffrey A. Mertens; Michael J. Bowman; Nancy N. Nichols; Michael A. Cotta; Stephen R. Hughes

Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR–XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose‐6‐P for xylose assimilation. The requirement for generating glucose‐6‐P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose‐6‐P. Thus, natural xylose‐assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose‐6‐P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH‐depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose‐6‐P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose. Published in 2011 by John Wiley & Sons, Ltd.


Journal of Peptide Science | 2008

Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain

Stephen R. Hughes; Patrick F. Dowd; Ronald E. Hector; Tadas Panavas; David E. Sterner; Nasib Qureshi; Kenneth M. Bischoff; Sookie S. Bang; Jeffrey A. Mertens; Eric T. Johnson; Xin Liang Li; John S. Jackson; Robert J. Caughey; Steven B. Riedmuller; Scott Bartolett; Siqing Liu; Joseph O. Rich; Philip J. Farrelly; Tauseef R. Butt; Joshua LaBaer; Michael A. Cotta

New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost‐effectiveness of the process. Spider venom is one of many potential sources of novel insect‐specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin‐1 from the wolf spider were produced in high throughput using an automated integrated plasmid‐based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin‐1 open reading frames (ORF) in a novel small ubiquitin‐like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so‐called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin α‐helix to interact with insect cell membranes or to increase its pore‐forming ability, leading to cell lysis. The toxin peptides have potential as value‐added coproducts to increase the cost‐effectiveness of fuel ethanol bioproduction. Copyright


Fems Microbiology Letters | 2008

Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism.

Nancy N. Nichols; Jeffrey A. Mertens

Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid (FA) and coenzyme A intermediates. Two P. putida transposon mutants were isolated that had impaired growth on furfural and FA, and DNA flanking the transposon insertion site was cloned from both mutants. The transposons disrupted psfB, a LysR-family regulatory gene in mutant PSF2 and psfF, a GcvR-type regulatory gene in PSF9. Disruption of two genes adjacent to psfB demonstrated that both are important for growth on FA, and ORFs in the proximity of psfB and psfF were transcriptionally activated during growth of P. putida on FA. Transcript levels increased in response to FA by 10-fold (a putative permease gene) to >1000-fold (a putative decarboxylase gene). The LysR-family gene appears to act positively, and the GcvR-family gene negatively, in regulating expression of neighboring genes in response to FA.


Journal of Laboratory Automation | 2007

Cost-Effective High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System

Stephen R. Hughes; Patrick F. Dowd; Ronald E. Hector; Steven B. Riedmuller; Scott Bartolett; Jeffrey A. Mertens; Nasib Qureshi; Siqing Liu; Kenneth M. Bischoff; Xin-Liang Li; John S. Jackson; David E. Sterner; Tadas Panavas; Joseph O. Rich; Philip J. Farrelly; Tauseef R. Butt; Michael A. Cotta

Robotic platforms are essential for production of large numbers of expression-ready plasmid sets to develop optimized clones and improved microbial strains for crucial bioenergy applications and simultaneous high-value peptide expression. Here we demonstrate a plasmid-based integrated robotic workcell, modified with a motorized vacuum filtration system, for performing fully automated molecular biology protocols, including assembly of mutagenized gene sequences, purification of PCR amplicons, ligation of PCR products into vectors, transformation of competent Escherichia coli, plating of recovered transformants, plasmid preparation, cloning, and expression of optimized genes. A library of genes encoding variants of wolf spider lycotoxin-1, a candidate bioinsecticide, was produced using PCR mutagenesis in an amino acid scanning strategy to generate a complete set of mutations across the lycotoxin-1 gene. The improved vacuum filtration system permits automated purification of PCR products. Methods for recovery and growth of bacteria containing plasmids with PCR inserts allow individual colony formation on a novel solid medium in a deepwell plate. Inserts are cloned into a bacterial vector to verify expression. These protocols form the core of a fully automated molecular biology platform that reduces the cost and time required to perform all operations. (JALA 2007;12:202–12)


Journal of Laboratory Automation | 2005

Development of a Liquid Handler Component for a Plasmid-Based Functional Proteomic Robotic Workcell

Stephen R. Hughes; Steven B. Riedmuller; Jeffrey A. Mertens; Xin-Liang Li; Kenneth M. Bischoff; Michael A. Cotta; Philip J. Farrelly

A Hudson Control Group, Inc. ProLink Express™ robotic workcell to conduct plasmid-based functional proteomics is being developed for optimization of protein open reading frames (ORF). The initial phase of this project is to design and assemble a Xantus liquid handler from Sias, Inc. modified by Hudson so that a workcell track component can be placed within the Xantus® gripper tool work area. The liquid handler is designed to produce plasmids using the Qiagen Turbo® plasmid preparation kit. This design allows processing of up to four 96-well plates in one run. The procedure eliminates disposable tips and provides an advanced wash system to prevent cross contamination. To evaluate liquid handler operation, a mutagenized cellulase F ORF plasmid library was prepared from wild-type cellulase F (Chen, H.; Li, X.-L.; Blum, D. L.; Ximenes, E. A.; Ljungdahl, L. G.CelF of Orpinomyces PC-2 has an intron and encodes a cellulase (CelF) containing a carbohydrate-binding module. Applied Biochemistry and Biotechnology 2003, 105–108, 775–785; Li, X.-L.; Chen, H.; Ljungdahl, L. G. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Applied and Environmental Microbiology 1997, 63(12), 4721–4728) using a novel Invitrogen Gateway® cloning strategy. For the automated reproducibility run, the average yield of plasmid was 5.35 μg per well from 1.347 mL of starting culture. Four plates were processed automatically on the liquid handler in 374 min compared to at least 441 min for the same plate operations performed manually. The quality and quantity of plasmids prepared on the liquid handler made the implementation of the following workcell protocols possible: DNA sequencing, in vitro transcription/translation, and transformation of bacterial and yeast strains for protein expression.

Collaboration


Dive into the Jeffrey A. Mertens's collaboration.

Top Co-Authors

Avatar

Ronald E. Hector

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Michael A. Cotta

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Michael J. Bowman

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Dien

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Stephen R. Hughes

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Bischoff

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Skory

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Joseph O. Rich

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Nasib Qureshi

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

David E. Sterner

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge