Jeffrey A. Stratford
Wilkes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey A. Stratford.
Frontiers in Ecology and the Environment | 2005
Jeffrey A. Stratford; W. Douglas Robinson
Irrespective of geography, forest destruction and fragmentation lead to lower avian species richness. The underlying mechanisms causing local extirpations have been studied most thoroughly in northern temperate landscapes, where higher levels of brood parasitism, nest predation, and possibly decreased food availability are responsible for the loss of some species. Tropical landscapes are being similarly altered, but studies of responses by tropical birds remain relatively scarce. Predicting how tropical birds respond to habitat loss and fragmentation should not be extended directly from the results of temperate investigations. Tropical birds possess different evolutionary and life histories, which make them vulnerable to a different suite of threats than those normally considered for birds from temperate regions. These same traits, including greater physiological and sensory specialization, reduced dispersal capabilities, and much lower local and regional population densities, indicate that strategies for...
Urban Ecosystems | 2005
Jeffrey A. Stratford; W. Douglas Robinson
Urbanization leads to long-term modification of landscapes by habitat loss, fragmentation, and the creation of new habitats. Species’ distributions respond to these modifications of habitat availability, but the combination of parameters and scale at which habitat alteration most strongly influences species distributions is poorly understood. We evaluated responses of neotropical migratory birds, a group known to be sensitive to habitat modification, across a gradient of urbanization in the southeastern United States. Thirteen Breeding Bird Survey routes, each with 40 to 50 point counts, were used to quantify species richness across the gradient of urbanization extending from downtown areas of Columbus, GA to natural woodlands. Buffers of 100, 200, and 1000 m radii were constructed from remote images around each counting point to quantify land-use with the goal of evaluating land-use parameters and scales that best described spatial variation in migrant bird species richness. Within each buffer we quantified the proportion of each cover type and within the 1000 m buffers we included several configuration parameters. We used an information-theoretic approach to separate models whose predictor variables were land-use parameters. Because measures of landscape configuration were all correlated with urban cover, these variables were entered separately. In 2002, the best model was composed of large-scale urban cover (negative effect) and mid-scale mixed hardwoods (negative and positive effect) and transitional cover (negative and positive effect) as well as the interaction between the latter two terms (positive effect). In 2003, the best model was composed of weighted edge density (negative effect), mid-scale mixed hardwood cover (negative and positive effect) and large scale transitional cover (positive effect) and the interaction between mixed hardwoods and weighted edge density (positive effect). Our results indicate that large scale habitat attributes influence the local species richness of migrant birds more than smaller scales. These results also indicate that urbanization, through increased urban cover or increasing edge contrast, has strong negative effects on species richness. Our findings support the contention that the conservation value of small woodlots in urban settings may be minimal and suggest that conservation of migratory birds will be best achieved by giving higher priority to sites where urban cover is still low and by preserving large areas of “green space” in urbanizing landscapes. The negative influence of urban cover combined with relatively minor effects of non-urban habitats on distributions of neotropical migratory birds indicates that continued urbanization of landscapes is a serious concern for conservation efforts.
Integrative Zoology | 2015
Michael A. Steele; Ghislain Rompré; Jeffrey A. Stratford; Hongmao Zhang; Matthew Suchocki; Shealyn Marino
Scatterhoarding rodents often place caches in the open where pilferage rates are reduced, suggesting that they tradeoff higher risks of predation for more secure cache sites. We tested this hypothesis in two study systems by measuring predation risks inferred from measures of giving-up densities (GUDs) at known cache sites and other sites for comparison. Rodent GUDs were measured with small trays containing 3 L of fine sand mixed with sunflower seeds. In the first experiment, we relied on a 2-year seed dispersal study in a natural forest to identify caches of eastern gray squirrels (Sciurus carolinensis) and then measured GUDs at: (i) these caches; (ii) comparable points along logs and rocks where rodent activity was assumed highest; and (iii) a set of random points. We found that GUDs and, presumably, predation risks, were higher at both cache and random points than those with cover. At the second site, we measured GUDs of eastern gray squirrels in an open park system and found that GUDs were consistently lowest at the base of the tree compared to more open sites, where previous studies show caching by squirrels to be highest and pilferage rates by naïve competitors to be lowest. These results confirm that predation risks can influence scatterhoarding decisions but that they are also highly context dependent, and that the landscape of fear, now so well documented in the literature, could potentially shape the temporal and spatial patterns of seedling establishment and forest regeneration in systems where scatterhoarding is common.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Vincenzo A. Ellis; Michael D. Collins; Matthew C. I. Medeiros; Eloisa H. R. Sari; Elyse D. Coffey; Rebecca C. Dickerson; Camile Lugarini; Jeffrey A. Stratford; Donata R. Henry; Loren Merrill; Alix E. Matthews; Alison A. Hanson; Jackson R. Roberts; Michael Joyce; Melanie R. Kunkel; Robert E. Ricklefs
Significance Within eastern North America, distributions of vector-transmitted haemosporidian blood parasites of birds, commonly known as “avian malaria parasites,” are associated with the distributions of their host species independently of direct effects of climate on potential vectors. Spatial analyses additionally indicated an absence of dispersal limitation for these parasites. Finally, host-breadth, ranging continuously from specialist to generalist, varies among parasite lineages and is dynamic within parasite assemblages over space and time. The distributions of avian haemosporidian parasites emphasize the ability of parasites to disperse across broad regions and to switch readily between hosts to become emerging infectious diseases. The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.
Parasitology Research | 2017
Vincenzo A. Ellis; Matthew C. I. Medeiros; Michael D. Collins; Eloisa H. R. Sari; Elyse D. Coffey; Rebecca C. Dickerson; Camile Lugarini; Jeffrey A. Stratford; Donata R. Henry; Loren Merrill; Alix E. Matthews; Alison A. Hanson; Jackson R. Roberts; Michael Joyce; Melanie R. Kunkel; Robert E. Ricklefs
Parasite prevalence is thought to be positively related to host population density owing to enhanced contagion. However, the relationship between prevalence and local abundance of multiple host species is underexplored. We surveyed birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) at multiple sites across eastern North America to test whether the prevalence of these parasites in a host species at a particular site is related to that host’s local abundance. Prevalence was positively related to host abundance within most sites, although the effect was stronger and more consistent for Plasmodium than for Haemoproteus. In contrast, prevalence was not related to variation in the abundance of most individual host species among sites across the region. These results suggest that parasite prevalence partly reflects the relative abundances of host species in local assemblages. However, three nonnative host species had low prevalence despite being relatively abundant at one site, as predicted by the enemy release hypothesis.
Integrative Zoology | 2011
Andrew W. Bartlow; Michael Kachmar; Nathanael I. Lichti; Robert K. Swihart; Jeffrey A. Stratford; Michael A. Steele
Studies from both tropical and temperate systems show that scatter-hoarding rodents selectively disperse larger seeds farther from their source than smaller seeds, potentially increasing seedling establishment in larger-seeded plants. Size-biased dispersal is evident in many oaks (Quercus) and is true both across and within species. Here, we predict that intraspecifc variation in seed size also influences acorn dispersal by the Blue Jay (Cyanocitta cristata Linnaeus), but in an opposite manner. Blue Jays are gape-limited and selectively disperse smaller acorn species (e.g. pin oaks [Quercus palustris Münchh]), but often carry several acorns in their crop during a single dispersal event. We predict that jays foraging on smaller acorns will load more seeds per trip and disperse seeds to greater distances than when single acorns are carried in the bill. To test this, we presented free-ranging Blue Jays with pin oak acorns of different sizes over a 2-year period. In each of 16 experimental trials, we monitored the birds at a feeding station with remote cameras and determined the number of acorns removed and the distance acorns were dispersed when cached. Jays were significantly more likely to engage in multiple seed loading with smaller seeds in both years of the study. During the second year, these smaller acorns were dispersed farther than larger acorns, and during the first year, larger acorns were dispersed farther, revealing an inconsistent response to seed size during our study. We suggest that in some circumstances, multiple seed loading by Blue Jays may favor dispersal in some plant species.
Behavioural Processes | 2014
Yang Luo; Zheng Yang; Michael A. Steele; Zhibin Zhang; Jeffrey A. Stratford; Hongmao Zhang
For food-hoarding strategies to be maintained in a population, the benefits of hoarding must outweigh the costs. If rewards are too low to offset the costs of hoarding, hoarders might be expected to abandon hoarding and/or shift to an alternative storing strategy (e.g., increase food consumption). However the ability to adjust to such circumstances requires that animals anticipate long-term rewards and adjust storing strategies to modify future outcomes. To test this, we subjected three sympatric food-hoarding species (the Korean field mouse, Apodemus peninsulae, both a scatter and larder hoarder; the Chinese white-bellied rat, Niviventer confucianus, only a larder hoarder; and Père Davids rock squirrel, Sciurotamias davidianus, predominantly a scatter hoarder) to repeated episodes of complete cache loss over nine sequential trials in semi-natural enclosures. Although these species increased harvest and consumption rates throughout the experiment, none of these three species ceased hoarding under these conditions. The variation in responses observed across species and gender suggest some degree of behavioural plasticity to compensate for such extreme losses, but a general inability to abandon hoarding or shift to an alternative strategy. Future studies should consider how such responses correspond to natural patterns of intensive pilferage in the field.
American Biology Teacher | 2013
Rachel Curtis; Jeffrey A. Klemens; Salvatore J. Agosta; Andrew W. Bartlow; Steve Wood; Jason A. Carlson; Jeffrey A. Stratford; Michael A. Steele
ABSTRACT Predator—prey dynamics are an important concept in ecology, often serving as an introduction to the field of community ecology. However, these dynamics are difficult for students to observe directly. We describe a methodology that employs model caterpillars made of clay to estimate rates of predator attack on a prey species. This approach can be implemented as a field laboratory in almost any natural or seminatural setting, and is designed to allow educators to pursue any number of student-generated hypotheses representing varying degrees of scientific sophistication ranging from middle school to college level.
Conservation Biology | 1999
Jeffrey A. Stratford; Philip C. Stouffer
Biological Conservation | 2015
Luke L. Powell; Norbert J. Cordeiro; Jeffrey A. Stratford