Jeffrey B. Eells
Mississippi State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey B. Eells.
Behavioural Brain Research | 2002
Jeffrey B. Eells; Barbara K. Lipska; S.K. Yeung; J.A. Misler; Vera M. Nikodem
Nurr1, an orphan nuclear receptor, is essential for the differentiation of the midbrain dopamine (DA) neurons; however, its function in adult midbrain DA neurons has not been determined. The present study compared regional brain levels of catecholamines and spontaneous and pharmacologically induced locomotor behaviors between mice heterozygous for the Nurr1-null allele (+/-) and wild type (+/+) littermates. The Nurr1 +/- mice had significantly lower levels of DA in whole brain, midbrain, prefrontal cortex and nucleus accumbens, although no significant differences were observed in the striatum, olfactory bulb or hippocampus. Nurr1 +/- mice displayed significantly greater locomotor activity in a novel open field and after saline injection with no significant difference in activity after treatment with amphetamine (2.5 or 5.0 mg/kg) or MK 801 (0.2 or 0.4 mg/kg). A similar elevation in locomotor activity was observed in Nurr1 +/- mice at 35 days old as was found in 70 days old adults. These data demonstrate that the loss of a single Nurr1 allele results in reduced DA levels in mesolimbic and mesocortical pathways and increased locomotor activity in response to mild stress. The involvement of Nurr1 in DA neurotransmission and the implications for schizophrenia are discussed.
Neuroscience | 2006
Jeffrey B. Eells; J.A. Misler; Vera M. Nikodem
Sensorimotor gating is a phenomenon that is linked with dopamine neurotransmission in limbic and cortical areas, and disruption of sensorimotor gating has been consistently demonstrated in schizophrenia patients. The nuclear receptor Nurr1 is essential for development of dopamine neurons and, using Nurr1-null heterozygous mice, has been found to be important for normal dopamine neurotransmission as null heterozygous mice have reduced limbic and cortical dopamine levels and elevated open-field locomotor activity. The current investigation compared sensorimotor gating, as measured by prepulse inhibition of the acoustic startle response, in Nurr1 wild-type and null heterozygous mice. When mice were weaned between 19 and 21 days of age either into isolation or groups of three to five and tested 12 weeks later, prepulse inhibition was elevated in group-raised null heterozygous mice and significantly disrupted in isolated null heterozygous mice as compared with isolation-raised wild-type mice and group-raised null heterozygous mice. Isolation had no effect on prepulse inhibition in wild-type mice. Isolation reduced tissue dopamine levels and elevated dopamine turnover in the nucleus accumbens and striatum in both wild-type and null heterozygous mice. In the prefrontal cortex, isolation reduced dopamine and 3,4-dihydroxyphenylacetic acid levels in null heterozygous as compared with isolation-raised wild-type mice, whereas no differences were observed between group-raised wild-type and null heterozygous mice. Neither the null heterozygous genotype nor isolation had any effect on basal or stress-induced corticosterone levels. These data suggest that the Nurr1 null heterozygous genotype predisposes these mice to isolation-induced disruption of prepulse inhibition that may be related to the interactions between intrinsic deficiencies in dopamine neurotransmission as a result of the null heterozygous genotype and isolation-induced changes in dopamine neurotransmission. Post-weaning isolation of Nurr1 null heterozygous mice provides a model to explore the interactions of genetic predisposition and environment/neurodevelopment on dopamine function that has important relevance to neuropsychiatric disorders.
Brain Research Bulletin | 2006
Jeffrey B. Eells; Jaime A. Misler; Vera M. Nikodem
The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.
Journal of Neurochemistry | 2006
Minchan Gil; Cushla McKinney; Mi Kyeong Lee; Jeffrey B. Eells; Marcia Phyillaier; Vera M. Nikodem
Nurr1 is an orphan nuclear transcription factor essential for the terminal differentiation of dopamine (DA) neurons in the ventral midbrain (VM). To identify the Nurr1‐target genes, we carried out microarray and quantitative real‐time PCR analyses of Nurr1 null and wild‐type mice in VM at embryonic day (E) 12.5 and shortly after birth (P0). In addition to the absence of mRNAs of DA synthesizing enzymes, the guanosine 5′‐triphosphate (GTP) cyclohydrolase I (GTPCH) was also substantially reduced in the VM of Nurr1‐null mice. GTPCH is the first enzyme in the synthesis pathway of tetrahydrobiopterin (BH4), an essential cofactor for tyrosine hydroxylase in DA synthesis. In the mouse, Nurr1 and GTPCH mRNA were first detected at E10.5, and GTPCH transcription paralleled that of Nurr1. Small interfering RNA targeted against Nurr1 decreases GTPCH expression in MC3T3‐E1 osteoblasts in cell culture. Cotransfection of Nurr1 and the GTPCH‐luciferase (luc) reporter increased the luc activity by about threefold in N2A cells. Additional analysis using 5′‐deletions and mutants revealed that Nurr1 activates GTPCH transcription indirectly through the proximal promoter region, in the absence of the nerve growth factor‐induced clone B (NGFI‐B) responsive element‐like sites, similarly, as recently reported for DA transporter regulation by Nurr1.
Neurotoxicology and Teratology | 2009
Jeffrey B. Eells; Timothy Brown
Organophosphates (OPs), commonly used as insecticides, inhibit acetylcholinesterase, the enzyme responsible for the inactivation of synaptic acetylcholine, which results in elevated acetylcholine neurotransmission. Nigrostriatal dopamine neurons receive substantial cholinergic innervation and express a number of nicotinic acetylcholine receptor subunits. Since epidemiological data have implicated pesticides in the incidence of Parkinsons disease, the current experiment investigated how repeated, developmental exposure to the OPs chlorpyrifos (CPS) or methyl parathion (MPT) affects striatal dopamine levels and dopamine neuron gene expression. Newborn rats were treated daily via oral gavage with corn oil vehicle, CPS, or MPT from postnatal days (PND) 1-21. Rats were sacrificed at PND 22 and 50. Levels of dopamine and its metabolites 3,4 dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum and mRNA expression was measured in the substantia nigra. At 22 days of age, CPS and MPT treatment had no effect on dopamine, DOPAC or HVA levels. At 50 days of age, CPS significantly elevated DOPAC levels and elevated dopamine turnover (DOPAC/dopamine) but did not affect dopamine or HVA levels. MPT had no significant effects on any of these parameters. Interestingly, both CPS and MPT treatments caused a significant alteration in the ratio of alpha7 to alpha6 nicotinic acetylcholine receptor (nAChR) subunit expression in the substantia nigra with a non-significant elevation in alpha6 and a reduction in alpha7 at 22 days. At 50 days of age, a significant elevation in alpha6 nAChR subunit was observed in the MPT treated rats. No differences in dopamine neuron transcription factors (Nurr1 or Lmx1b) or neurotransmission genes were observed. These data demonstrate that repeated exposure to OPs during postnatal maturation can have a significant effect on dopamine neurochemistry, primarily by modifying dopamine metabolism, which can persist for up to 1 month (CPS) and alter acetylcholine subunit expression (CPS and MPT).
Synapse | 2008
Talisha M. Moore; Timothy Brown; Mirae Cade; Jeffrey B. Eells
The nuclear receptor Nurr1 functions to regulate dopamine neurotransmission, as Nurr1‐null heterozygous (+/−) mice have alterations in dopamine function and, when raised in isolation immediately after weaning, have disruptions in sensorimotor gaiting, a behavior altered in schizophrenia and modulated by dopamine neurotransmission. The goal of this study was to determine nigrostriatal and mesoaccumbens dopamine neurotransmission using microdialysis in +/− and wild‐type (+/+) mice raised in groups or isolation. In the striatum, isolation significantly reduced amphetamine‐stimulated dopamine overflow and levels of the dopamine metabolite 3,4‐dihydroxyphenylacetic acid (DOPAC). The +/− genotype alone caused a small, nonsignificant reduction in basal dopamine levels but a significant reduction in basal DOPAC levels. In the nucleus accumbens shell, the +/− genotype elevated basal dopamine levels. Isolation had genotype specific effects, causing an elevation in amphetamine‐stimulated dopamine overflow in +/− mice but a reduction in +/+ mice, resulting in a large difference in stimulated dopamine overflow when comparing the +/+ and +/− isolated mice. These data indicate that a deletion of a single allele of Nurr1, which produces only subtle changes alone, when coupled with a developmental stressor, can dramatically alter mesoaccumbens dopamine neurotransmission. These observations demonstrate how the combination of genetic predisposition and an environmental insult during development can cause dysfunction of dopamine neurotransmission and could contribute to diseases such as schizophrenia or attention deficit hyperactivity disorder. Synapse 62:764–774, 2008.
PLOS ONE | 2015
Jeffrey B. Eells; Andrea Varela-Stokes; Shirley X. Guo-Ross; Evangel Kummari; Holly M. Smith; Erin Cox; David S. Lindsay
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Virology Journal | 2011
Veronica L. Scott; Leslie A. Shack; Jeffrey B. Eells; P. Ryan; Janet R. Donaldson; Karen S. Coats
BackgroundFIV infection frequently compromises pregnancy under experimental conditions and is accompanied by aberrant expression of some placental cytokines. Trophoblasts produce numerous immunomodulators that play a role in placental development and pregnancy maintenance. We hypothesized that FIV infection may cause dysregulation of trophoblast immunomodulator expression, and aberrant expression of these molecules may potentiate inflammation and compromise pregnancy. The purpose of this project was to evaluate the expression of representative pro-(TNF-α, IFN-γ, IL-1β, IL-2, IL-6, IL-12p35, IL-12p40, IL-18, and GM-CSF) and anti-inflammatory cytokines (IL-4, IL-5, and IL-10); CD134, a secondary co-stimulatory molecule expressed on activated T cells (FIV primary receptor); the chemokine receptor CXCR4 (FIV co-receptor); SDF-1α, the chemokine ligand to CXCR4; and FIV gag in trophoblasts from early-and late-term pregnancy.MethodsWe used an anti-cytokeratin antibody in immunohistochemistry to identify trophoblasts selectively, collected these cells using laser capture microdissection, and extracted total RNA from the captured cell populations. Real time, reverse transcription-PCR was used to quantify gene expression.ResultsWe detected IL-4, IL-5, IL-6, IL-1β, IL-12p35, IL-12p40, and CXCR4 in trophoblasts from early-and late-term pregnancy. Expression of cytokines increased from early to late pregnancy in normal tissues. A clear, pro-inflammatory microenvironment was not evident in trophoblasts from FIV-infected queens at either stage of pregnancy. Reproductive failure was accompanied by down-regulation of both pro-and anti-inflammatory cytokines. CD134 was not detected in trophoblasts, and FIV gag was detected in only one of ten trophoblast specimens collected from FIV-infected queens.ConclusionFeline trophoblasts express an array of pro-and anti-inflammatory immunomodulators whose expression increases from early to late pregnancy in normal tissues. Non-viable pregnancies were associated with decreased expression of immunomodulators which regulate trophoblast invasion in other species. The detection of FIV RNA in trophoblasts was rare, suggesting that the high rate of reproductive failure in FIV-infected queens was not a direct result of viral replication in trophoblasts. The influence of placental immune cells on trophoblast function and pregnancy maintenance in the FIV-infected cat requires additional study.
Neurotoxicology | 2017
Russell L. Carr; Nathan H. Armstrong; Alenda T. Buchanan; Jeffrey B. Eells; Afzaal N. Mohammed; Matthew K. Ross; Carole A. Nail
&NA; Exposure to chlorpyrifos (CPF) during the late preweanling period in rats inhibits the endocannabinoid metabolizing enzymes fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), resulting in accumulation of their respective substrates anandamide (AEA) and 2‐arachidonylglycerol (2‐AG). This occurs at 1.0 mg/kg, but at a lower dosage (0.5 mg/kg) only FAAH and AEA are affected with no measurable inhibition of either cholinesterase (ChE) or MAGL. The endocannabinoid system plays a vital role in nervous system development and may be an important developmental target for CPF. The endocannabinoid system plays an important role in the regulation of anxiety and, at higher dosages, developmental exposure to CPF alters anxiety‐like behavior. However, it is not clear whether exposure to low dosages of CPF that do not inhibit ChE will cause any persistent effects on anxiety‐like behavior. To determine if this occurs, 10‐day old rat pups were exposed daily for 7 days to either corn oil or 0.5, 0.75, or 1.0 mg/kg CPF by oral gavage. At 12 h following the last CPF administration, 1.0 mg/kg resulted in significant inhibition of FAAH, MAGL, and ChE, whereas 0.5 and 0.75 mg/kg resulted in significant inhibition of only FAAH. AEA levels were significantly elevated in all three treatment groups as were palmitoylethanolamide and oleoylethanolamide, which are also substrates for FAAH. 2‐AG levels were significantly elevated by 0.75 and 1.0 mg/kg but not 0.5 mg/kg. On day 25, the latency to emerge from a dark container into a highly illuminated novel open field was measured as an indicator of anxiety. All three CPF treatment groups spent significantly less time in the dark container prior to emerging as compared to the control group, suggesting a decreased level of anxiety. This demonstrates that repeated preweanling exposure to dosages of CPF that do not inhibit brain ChE can induce a decline in the level of anxiety that is detectable during the early postweanling period. HighlightsRepeated developmental chlorpyrifos exposure alters brain endocannabinoid signaling.Preweanling exposure to chlorpyrifos inhibits FAAH and increases AEA, PEA, and OEA levels.Preweanling exposure to chlorpyrifos alters anxiety‐like behavior in juveniles.These effects occur in the absence of brain ChE inhibition.
Toxicological Sciences | 2016
Eun-Ju Yang; John V. Stokes; Evangel Kummari; Jeffrey B. Eells; Barbara L. F. Kaplan
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder, characterized by demyelination of neurons in the central nervous system. To investigate the pathogenicity of various T cell types in MS, especially IFN-γ- or IL-17-producing CD4(+ )cells (TH1 or TH17 cells, respectively), the mouse model, experimental autoimmune encephalomyelitis (EAE), is commonly used. One method by which EAE is induced is immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (MOG35-55) followed by subsequent injections of pertussis toxin (PTX) as an adjuvant. We have an interest in the mechanisms by which EAE occurs in the absence of PTX because it induces a milder disease state more consistent with autoimmune disease onset and PTX inactivates Gi/o protein-coupled receptors, many of which contribute to immune homeostasis. Another receptor that plays a role in immune homeostasis is the aryl hydrocarbon receptor (AHR). In fact, the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to attenuate EAE pathogenesis by affecting CD4(+ )T and regulatory T (Treg) cells in an AHR-dependent manner. However, many of these studies have been conducted with an acute high dose TCDD. Thus, the goal of this work was to investigate the modulation of MOG-specific immune responses with subchronic low dose TCDD (0.1-1.0 μg/kg/d for 12 days) in EAE without PTX. The results demonstrate that subchronic, low dose exposure of TCDD attenuates the immune responses in EAE development in the absence of PTX, which is due in part to suppression of MOG-specific IL-17A and IFN-γ responses.