Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey C. Horowitz is active.

Publication


Featured researches published by Jeffrey C. Horowitz.


Nature Medicine | 2009

NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury

Louise Hecker; Ragini Vittal; Tamara R. Jones; Rajesh Jagirdar; Tracy R. Luckhardt; Jeffrey C. Horowitz; Subramaniam Pennathur; Fernando J. Martinez; Victor J. Thannickal

Members of the NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to reactive oxygen species, have increased in number during eukaryotic evolution. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants. The prototypical member of this family, NOX-2 (gp91phox), is expressed in phagocytic cells and mediates microbicidal activities. Here we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX-4 expression in lung mesenchymal cells via SMAD-3, a receptor-regulated protein that modulates gene transcription. NOX-4–dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1–induced myofibroblast differentiation, extracellular matrix (ECM) production and contractility. NOX-4 is upregulated in lungs of mice subjected to noninfectious injury and in cases of human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX-4 abrogates fibrogenesis in two murine models of lung injury. These studies support a function for NOX4 in tissue fibrogenesis and provide proof of concept for therapeutic targeting of NOX-4 in recalcitrant fibrotic disorders.


Journal of Biological Chemistry | 2003

Myofibroblast Differentiation by Transforming Growth Factor-β1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase

Victor J. Thannickal; Daniel Y. Lee; Eric S. White; Zongbin Cui; Jose M. Larios; Raquel Chacon; Jeffrey C. Horowitz; Regina M. Day; Peedikayil E. Thomas

Myofibroblast differentiation and activation by transforming growth factor-β1 (TGF-β1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-β1and adhesion-dependent signals. TGF-β1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-β receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-β1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-β1-induced α-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of α-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-β1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-β1/Smad signaling.


American Journal of Respiratory and Critical Care Medicine | 2012

Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation

Adam J. Booth; Ryan Hadley; Ashley M. Cornett; Alyssa Dreffs; Stephanie A. Matthes; Jessica L. Tsui; Kevin B. Weiss; Jeffrey C. Horowitz; Vincent F. Fiore; Thomas H. Barker; Bethany B. Moore; Fernando J. Martinez; Laura E. Niklason; Eric S. White

RATIONALE Extracellular matrix (ECM) is a dynamic tissue that contributes to organ integrity and function, and its regulation of cell phenotype is a major aspect of cell biology. However, standard in vitro culture approaches are of unclear physiologic relevance because they do not mimic the compositional, architectural, or distensible nature of a living organ. In the lung, fibroblasts exist in ECM-rich interstitial spaces and are key effectors of lung fibrogenesis. OBJECTIVES To better address how ECM influences fibroblast phenotype in a disease-specific manner, we developed a culture system using acellular human normal and fibrotic lungs. METHODS Decellularization was achieved using treatment with detergents, salts, and DNase. The resultant matrices can be sectioned as uniform slices within which cells were cultured. MEASUREMENTS AND MAIN RESULTS We report that the decellularization process effectively removes cellular and nuclear material while retaining native dimensionality and stiffness of lung tissue. We demonstrate that lung fibroblasts reseeded into acellular lung matrices can be subsequently assayed using conventional protocols; in this manner we show that fibrotic matrices clearly promote transforming growth factor-β-independent myofibroblast differentiation compared with normal matrices. Furthermore, comprehensive analysis of acellular matrix ECM details significant compositional differences between normal and fibrotic lungs, paving the way for further study of novel hypotheses. CONCLUSIONS This methodology is expected to allow investigation of important ECM-based hypotheses in human tissues and permits future scientific exploration in an organ- and disease-specific manner.


The FASEB Journal | 2005

Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts.

Meghna Waghray; Zongbin Cui; Jeffrey C. Horowitz; Indhu Subramanian; Fernando J. Martinez; Galen B. Toews; Victor J. Thannickal

Cell‐cell signaling roles for reactive oxygen species (ROS) generated in response to growth factors/cytokines in nonphagocytic cells are not well defined. In this study, we show that fibroblasts isolated from lungs of patients with idiopathic pulmonary fibrosis (IPF) generate extracellular hydrogen peroxide (H2O2) in response to the multifunctional cytokine, transforming growth factor‐β1 (TGF‐β1). In contrast, TGF‐β1 stimulation of small airway epithelial cells (SAECs) does not result in detectable levels of extracellular H2O2. IPF fibroblasts independently stimulated with TGF‐β1 induce loss of viability and death of overlying SAECs when cocultured in a compartmentalized Transwell system. These effects on SAECs are inhibited by the addition of catalase to the coculture system or by the selective enzymatic blockade of H2O2 production by IPF fibroblasts. IPF fibroblasts heterogeneously express α‐smooth muscle actin stress fibers, a marker of myofibroblast differentiation. Cellular localization of H2O2 by a fluorescent‐labeling strategy demonstrated that extracellular secretion of H2O2 is specific to the myofibroblast phenotype. Thus, myofibroblast secretion of H2O2 functions as a diffusible death signal for lung epithelial cells. This novel mechanism for intercellular ROS signaling may be important in physiological/pathophysiological processes characterized by regenerating epithelial cells and activated myofibroblasts.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis.

Fei Liu; David Lagares; Kyoung Moo Choi; Lauren Stopfer; Aleksandar Marinkovic; Vladimir Vrbanac; Clemens K. Probst; Samantha E. Hiemer; Thomas H. Sisson; Jeffrey C. Horowitz; Ivan O. Rosas; Carol A. Feghali-Bostwick; Xaralabos Varelas; Andrew M. Tager; Daniel J. Tschumperlin

Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis.


American Journal of Respiratory and Critical Care Medicine | 2014

Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report

Timothy S. Blackwell; Andrew M. Tager; Zea Borok; Bethany B. Moore; David A. Schwartz; Kevin J. Anstrom; Ziv Bar-Joseph; Peter B. Bitterman; Michael R. Blackburn; William Bradford; Kevin K. Brown; Harold A. Chapman; Harold R. Collard; Gregory P. Cosgrove; Robin R. Deterding; Ramona Doyle; Kevin R. Flaherty; Christine Kim Garcia; James S. Hagood; Craig A. Henke; Erica L. Herzog; Cory M. Hogaboam; Jeffrey C. Horowitz; Talmadge E. King; James E. Loyd; William Lawson; Clay B. Marsh; Paul W. Noble; Imre Noth; Dean Sheppard

The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.


American Journal of Pathology | 2005

Modulation of Prosurvival Signaling in Fibroblasts by a Protein Kinase Inhibitor Protects against Fibrotic Tissue Injury

Ragini Vittal; Jeffrey C. Horowitz; Bethany B. Moore; Hengmin Zhang; Fernando J. Martinez; Galen B. Toews; Theodore J. Standiford; Victor J. Thannickal

Progressive fibrotic diseases involving diverse organ systems are associated with the persistence of fibroblasts/myofibroblasts in injured tissues. Activation of focal adhesion kinase (FAK) and protein kinase B (PKB/Akt) by transforming growth factor-beta1 mediate stable induction of myofibroblast differentiation and survival. In this report, we demonstrate that transforming growth factor-beta1-induced activation of both PKB/Akt and FAK are dose dependently inhibited by the protein kinase inhibitor, AG1879, in cultured human lung fibroblasts. In a murine model of intratracheal bleomycin-induced lung fibrosis, regions of active fibrogenesis demonstrate elevated expression of PKB/Akt and FAK phosphorylation in vivo, effects that are attenuated in mice receiving daily intraperitoneal injections of AG1879 (bleomycin-AG1879) versus a chemically inactive analog (bleomycin-control). PKB/Akt and FAK phosphorylation are elevated in fibroblasts isolated from lungs of bleomycin-injured mice, effects that are inhibited in bleomycin-AG1879 mice. Accumulation of alpha-smooth muscle actin-expressing myofibroblasts is markedly reduced in lungs of bleomycin-AG1879 mice. The numbers of recruited inflammatory cells were not significantly different between these groups. Bleomycin-AG1879 mice are protected from lung fibrosis as evidenced by histopathology, trichrome staining, and biochemical analysis for collagen. Thus, targeting of prosurvival signaling pathways in fibroblasts/myofibroblasts may provide a novel and effective strategy for anti-fibrotic therapy of treatment-unresponsive fibrotic disorders.


The FASEB Journal | 2009

Prostaglandin E2 induces fibroblast apoptosis by modulating multiple survival pathways

Steven K. Huang; Eric S. White; Scott H. Wettlaufer; Heather Grifka; Cory M. Hogaboam; Victor J. Thannickal; Jeffrey C. Horowitz; Marc Peters-Golden

Although the lipid mediator prostaglandin E2 (PGE2) exerts antifibrotic effects by inhibiting multiple fibroblast functions, its ability to regulate fibroblast survival is unknown. Here, we examined the effects of this prostanoid on apoptosis and apoptosis pathways in normal and fibrotic lung fibroblasts. As compared to medium alone, 24 h of treatment with PGE2 increased apoptosis of normal lung fibroblasts in a dose‐dependent manner (EC50~50 nM), as measured by annexin V staining, caspase 3 activity, cleavage of poly‐ADP‐ribose polymerase, and single‐stranded DNA levels. PGE2 also potentiated apoptosis elicited by Fas ligand plus cycloheximide. These proapoptotic actions were dependent on signaling through the EP2/EP4 receptors and by downstream activation of both caspases 8 and 9. Silencing and gene deletion of PTEN demonstrated that the effects of PGE2 involved decreased activity of the prosurvival molecule Akt. PGE2 also down‐regulated expression of survivin, an inhibitor of apoptosis, and increased expression of Fas. Fibroblasts from patients with pulmonary fibrosis exhibited resistance to the apoptotic effects of PGE2. These findings show for the first time that, in contrast to its effects on many other cell types, PGE2 promotes apoptosis in lung fibroblasts through diverse pathways. They provide another dimension by which PGE2 may inhibit, and perhaps even reverse, fibrogenesis in patients with interstitial lung disease.—Huang, S. K., White, E. S., Wettlaufer, S. H., Grifka, H., Hogaboam, C. M., Thannickal, V. J., Horowitz, J. C., Peters‐Golden, M. Prostaglandin E2 induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J. 23, 4317–4326 (2009). www.fasebj.org


Inflammatory Bowel Diseases | 2012

Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: Impact of a “Top‐Down” approach to intestinal fibrosis in mice

Laura A. Johnson; Amy Luke; Kay Sauder; David S. Moons; Jeffrey C. Horowitz; Peter D. Higgins

Background: The natural history of Crohns disease follows a path of progression from an inflammatory to a fibrostenosing disease, with most patients requiring surgical resection of fibrotic strictures. Potent antiinflammatory therapies reduce inflammation but do not appear to alter the natural history of intestinal fibrosis. The aim of this study was to determine the relationship between intestinal inflammation and fibrogenesis and the impact of a very early “top‐down” interventional approach on fibrosis in vivo. Methods: In this study we removed the inflammatory stimulus from the Salmonella typhimurium mouse model of intestinal fibrosis by eradicating the S. typhimurium infection with levofloxacin at sequential timepoints during the infection. We evaluated the effect of this elimination of the inflammatory stimulus on the natural history of inflammation and fibrosis as determined by gross pathology, histopathology, mRNA expression, and protein expression. Results: Fibrogenesis is preceded by inflammation. Delayed eradication of the inflammatory stimulus by antibiotic treatment represses inflammation without preventing fibrosis. Early intervention significantly ameliorates but does not completely prevent subsequent fibrosis. Conclusions: This study demonstrates that intestinal fibrosis develops despite removal of an inflammatory stimulus and elimination of inflammation. Early intervention ameliorates but does not abolish subsequent fibrosis, suggesting that fibrosis, once initiated, is self‐propagating, suggesting that a very early top‐down interventional approach may have the most impact on fibrostenosing disease. (Inflamm Bowel Dis 2012;)


Cell Death and Disease | 2013

Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts

Steven K. Huang; Anne M. Scruggs; J Donaghy; Jeffrey C. Horowitz; Zbigniew Zasłona; S Przybranowski; Eric S. White; Marc Peters-Golden

Although the recruitment of fibroblasts to areas of injury is critical for wound healing, their subsequent apoptosis is necessary in order to prevent excessive scarring. Fibroproliferative diseases, such as pulmonary fibrosis, are often characterized by fibroblast resistance to apoptosis, but the mechanism(s) for this resistance remains elusive. Here, we employed a murine model of pulmonary fibrosis and cells from patients with idiopathic pulmonary fibrosis (IPF) to explore epigenetic mechanisms that may be responsible for the decreased expression of Fas, a cell surface death receptor whose expression has been observed to be decreased in pulmonary fibrosis. Murine pulmonary fibrosis was elicited by intratracheal injection of bleomycin. Fibroblasts cultured from bleomycin-treated mice exhibited decreased Fas expression and resistance to Fas-mediated apoptosis compared with cells from saline-treated control mice. Although there were no differences in DNA methylation, the Fas promoter in fibroblasts from bleomycin-treated mice exhibited decreased histone acetylation and increased histone 3 lysine 9 trimethylation (H3K9Me3). This was associated with increased histone deacetylase (HDAC)-2 and HDAC4 expression. Treatment with HDAC inhibitors increased Fas expression and restored susceptibility to Fas-mediated apoptosis. Fibroblasts from patients with IPF likewise exhibited decreased histone acetylation and increased H3K9Me3 at the Fas promoter and increased their expression of Fas in the presence of an HDAC inhibitor. These findings demonstrate the critical role of histone modifications in the development of fibroblast resistance to apoptosis in both a murine model and in patients with pulmonary fibrosis and suggest novel approaches to therapy for progressive fibroproliferative disorders.

Collaboration


Dive into the Jeffrey C. Horowitz's collaboration.

Top Co-Authors

Avatar

Victor J. Thannickal

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge