Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey C. Owrutsky is active.

Publication


Featured researches published by Jeffrey C. Owrutsky.


Nano Letters | 2013

Low-Loss, Extreme Subdiffraction Photon Confinement via Silicon Carbide Localized Surface Phonon Polariton Resonators

Joshua D. Caldwell; Orest J. Glembocki; Yan Francescato; Nicholas Sharac; Vincenzo Giannini; Francisco J. Bezares; James P. Long; Jeffrey C. Owrutsky; I. Vurgaftman; Joseph G. Tischler; Virginia D. Wheeler; Nabil Bassim; Loretta Shirey; Richard Kasica; Stefan A. Maier

Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is aided by optical phonons. Using fabricated 6H-silicon carbide nanopillar antenna arrays, we report on the observation of subdiffraction, localized SPhP resonances. They exhibit a dipolar resonance transverse to the nanopillar axis and a monopolar resonance associated with the longitudinal axis dependent upon the SiC substrate. Both exhibit exceptionally narrow linewidths (7-24 cm(-1)), with quality factors of 40-135, which exceed the theoretical limit of plasmonic systems, with extreme subwavelength confinement of (λ(res)3/V(eff))1/3 = 50-200. Under certain conditions, the modes are Raman-active, enabling their study in the visible spectral range. These observations promise to reinvigorate research in SPhP phenomena and their use for nanophotonic applications.


Journal of Chemical Physics | 2005

Vibrational spectroscopy and dynamics of small anions in ionic liquid solutions

Kevin Dahl; Gerald M. Sando; Douglas M. Fox; Thomas E. Sutto; Jeffrey C. Owrutsky

Fourier-transform infrared (FTIR) and time-resolved IR spectroscopies have been used to study vibrational band positions, vibrational energy relaxation (VER) rates, and reorientation times of anions in several ionic liquid (IL) solutions. The ILs primarily investigated are based on the 1-butyl-2,3-dimethylimidazolium ([BM(2)IM]) cation with thiocyanate (NCS-), dicyanamide (N(CN)2-), and tetrafluoroborate (BF4-) anions. Spectroscopic studies are carried out near 2000 cm-1 for the C[Triple Bond]N stretching bands of NCS- and N(CN)2- as the IL anion as well as for NCS-, N(CN)2-, and azide (N3-) anions dissolved in [BM2IM][BF4]. The VER studies of N(CN)2- are reported for the first time. VER of N3-, NCS-, and N(CN)2- is measured in normal solvents, such as N-methylformamide, to compare with the IL solutions. The spectral shifts and VER rates of the anions in IL solution are quite similar to those in polar aprotic, conventional organic solvents, i.e., dimethylsulfoxide, and significantly different than those in methanol, in which there is hydrogen bonding. Similar studies were also carried out for the anions in another IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), in which the C2 hydrogen is present. The results for the anions are similar to those in the [BM2IM] containing ILs, in which the C2 hydrogen is methyl substituted. This suggests that substituting this hydrogen has, at most, a minor effect on the degree of hydrogen bonding in the anion-IL solvation interaction based on the infrared spectra and dynamics.


Optics Express | 2013

Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays.

Francisco J. Bezares; James P. Long; Orest J. Glembocki; Junpeng Guo; R. W. Rendell; Richard Kasica; Loretta Shirey; Jeffrey C. Owrutsky; Joshua D. Caldwell

Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber. The resonant wavelengths shift approximately linearly with nanopillar diameter, which enables a simple empirical description of the resonance condition. In addition, resonances are also significantly affected by array density, with an overall oscillating blue shift as the pitch is reduced. Finite-element method and finite-difference time-domain simulations agree closely with experimental results and provide valuable insight into the nature of the dielectric resonance modes, including a surprisingly small influence of the substrate on resonance wavelength. To probe local fields within the Si nanopillars, µ-Raman scattering measurements were also conducted that confirm enhanced optical fields in the pillars when excited on-resonance.


Nature Nanotechnology | 2016

Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics

Joshua D. Caldwell; I. Vurgaftman; Joseph G. Tischler; Orest J. Glembocki; Jeffrey C. Owrutsky; Thomas L. Reinecke

The field of nanophotonics focuses on the ability to confine light to nanoscale dimensions, typically much smaller than the wavelength of light. The goal is to develop light-based technologies that are impossible with traditional optics. Subdiffractional confinement can be achieved using either surface plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs). SPPs can provide a gate-tunable, broad-bandwidth response, but suffer from high optical losses; whereas SPhPs offer a relatively low-loss, crystal-dependent optical response, but only over a narrow spectral range, with limited opportunities for active tunability. Here, motivated by the recent results from monolayer graphene and multilayer hexagonal boron nitride heterostructures, we discuss the potential of electromagnetic hybrids--materials incorporating mixtures of SPPs and SPhPs--for overcoming the limitations of the individual polaritons. Furthermore, we also propose a new type of atomic-scale hybrid--the crystalline hybrid--where mixtures of two or more atomic-scale (∼3 nm or less) polar dielectric materials lead to the creation of a new material resulting from hybridized optic phonon behaviour of the constituents, potentially allowing direct control over the dielectric function. These atomic-scale hybrids expand the toolkit of materials for mid-infrared to terahertz nanophotonics and could enable the creation of novel actively tunable, yet low-loss optics at the nanoscale.


Journal of Chemical Physics | 2004

Vibrational and rotational dynamics of cyanoferrates in solution

Gerald M. Sando; Q. Zhong; Jeffrey C. Owrutsky

Ultrafast infrared spectroscopy has been used to measure vibrational energy relaxation (VER) and reorientation (Tr) times for the high frequency vibrational bands of potassium ferrocyanide and ferricyanide (CN stretches), and sodium nitroprusside (SNP, CN, and NO stretches) in water and several other solvents. Relatively short VER times (4-43 ps) are determined for the hexacyano species and for the NO band of SNP, but the CN band of SNP relaxes much more slowly (55-365 ps). The solvent dependence of the VER times is similar for all the solutes and resembles what has been previously observed for triatomic molecular ions [Li et al., J. Chem. Phys. 98, 5499 (1993)]. Anisotropy decay times are also measured from the polarization dependence of the transient absorptions. The Tr times determined for SNP are different for the different vibrational bands; for the nondegenerate NO mode of nitroprusside (SNP) they are much longer (>15 ps), correlate with solvent viscosity, and are attributed to overall molecular rotation. The short Tr (<10 ps) times for the CN band in SNP and for the hexacyanoferrates are due to dipole orientational relaxation in which the transition moment rapidly redistributes among the degenerate modes. There is no evidence of intramolecular vibrational relaxation (IVR) to other high frequency modes. VER times measured for hexacarbonyls and SNP in methanol are similar, which suggests that the generally faster VER for the latter is in part because they are soluble in more strongly interacting polar solvents. The results are compared to those for small ions and metal carbonyls and are discussed in terms of the importance of solute charge and symmetry on VER.


Journal of Chemical Physics | 1999

ULTRAFAST PHOTODISSOCIATION DYNAMICS OF THE S1 AND S2 STATES OF ACETONE

Jeffrey C. Owrutsky; A. P. Baronavski

The photodissociation dynamics for the two lowest excited electronic states (S1 valence state and the S2, 3s Rydberg state) of acetone (h6 and d6) have been studied using femtosecond mass-resolved photoionization spectroscopy. The S1 state dynamics was investigated by near ultraviolet (UV) pump (∼265 nm) and deep UV (205 nm) or visible (410 nm) probe. The primary dissociation time is instrument-limited, providing a 200 fs upper limit to the lifetime. The acetyl ion signal exhibits a subpicosecond decay and a persistent signal. The fast decay is consistent with results from Kim et al. [J. Chem. Phys. 103, 477 (1995)] for two-photon excitation to near the 4s state. The persistent signal is due to probe-induced ionization of acetyl radicals that are stable with respect to secondary dissociation. The S2 excited state lifetime measured for acetone-d6 using 194 pump and 259 nm probe is 13.5±1.0 ps. This is almost three times longer than we previously determined for this state in acetone-h6, 4.7±0.2 ps. The seco...


Journal of Chemical Physics | 2003

Vibrational energy relaxation of aqueous azide ion confined in reverse micelles

Q. Zhong; A. P. Baronavski; Jeffrey C. Owrutsky

Vibrational energy relaxation (VER) times have been measured by ultrafast infrared spectroscopy near 2000 cm−1 for the antisymmetric stretching ν3 band of azide ion in water pools of nonionic reverse micelles (RM). The water pool radii were varied in the 1–3 nm range by adjusting the water-to-surfactant molar ratio, ω=[H2O]/[surfactant]. Compared to the value measured in this work for bulk water (0.81±0.06 ps), the VER decay times are about three times longer (2.5±0.2 ps) for the smallest RM studied (ω=1) and become shorter with increasing ω and RM size but do not reach the bulk value at the largest ω studied. Solvent shifts of the azide vibrational band in RMs have been previously reported [Langmuir 18, 7401 (2002)], and in a manner similar to the VER rates, tend toward the bulk water value with increasing ω. Studies of the VER dynamics of azide ion in RMs are used to investigate confinement effects on solvation and to explore the effects of continuously modifying the solute–solvent interaction by varyin...


Journal of Chemical Physics | 2003

Reorientation and vibrational energy relaxation of pseudohalide ions confined in reverse micelle water pools

Q. Zhong; A. P. Baronavski; Jeffrey C. Owrutsky

Reorientation and vibrational energy relaxation times have been measured by ultrafast transient polarization IR spectroscopy for the antisymmetric stretching band in the 2000–2200 cm−1 region of pseudohalide ions, N3−, NCO−, and NCS−, confined in nanosize water pools of reverse micelles (RMs). The RMs are composed of nonionic nonylphenyl poly-oxyethylene surfactant in cyclohexane. Vibrational energy relaxation times (T1) of the NCO− and NCS− ions are about three times longer in small RMs compared to bulk water, similar to our earlier results on the N3− ion [J. Chem. Phys. 118, 7074 (2003)]. The longer T1 times are attributed to the reduced interaction between the ions and water molecules due to confinement effects and hydration of the surfactant headgroups by water molecules. Reorientation times (TR) of the N3− and NCS− ions are found to be more than one order of magnitude longer in small RMs than in bulk H2O. The observed longer TR times support the notion that water molecules inside RMs have very restri...


Reviews in Analytical Chemistry | 2010

In Situ Optical Studies of Solid-Oxide Fuel Cells

Michael B. Pomfret; Jeffrey C. Owrutsky; Robert A. Walker

Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1 degrees C across a SOFC electrode at temperatures higher than 600 degrees C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.


Journal of Chemical Physics | 1999

Ultrafast photodissociation studies of acetyl cyanide and acetic acid and unimolecular decomposition rates of the acetyl radical products

Jeffrey C. Owrutsky; A. P. Baronavski

Unimolecular decomposition rates for acetyl radical following the photodissociation of acetyl cyanide and acetic acid near 193 nm have been studied using ultrafast mass-resolved photoionization spectroscopy. In both cases, the parent decays with an instrumentally limited lifetime, while the acetyl radical behaves in a manner consistent with an RRKM mechanism, in contrast to our previous results on acetone. It is necessary to convolute the population distribution with the microcanonical RRKM rates in order to achieve this agreement. We have also undertaken an ab initio study of the excited states of acetyl cyanide to clarify the assignments of these states. The state excited at 193 nm arises from a π→π* transition with a calculated transition velocity dipole moment oriented at an angle of 57° with respect to the C–C≡N bond, resulting in an anisotropy parameter of −0.22. This is in reasonable agreement with the previous data of North et al. [J. Phys. Chem. A 101, 9224 (1997)]. The apparent RRKM behavior of ...

Collaboration


Dive into the Jeffrey C. Owrutsky's collaboration.

Top Co-Authors

Avatar

Daniel A. Steinhurst

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael B. Pomfret

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam D. Dunkelberger

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald M. Sando

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. P. Baronavski

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Blake S. Simpkins

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Caldwell

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan L. Rose-Pehrsson

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge