Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Comer is active.

Publication


Featured researches published by Jeffrey Comer.


Nano Letters | 2012

Assessing Graphene Nanopores for Sequencing DNA

David B. Wells; Maxim Belkin; Jeffrey Comer; Aleksei Aksimentiev

Using all-atom molecular dynamics and atomic-resolution Brownian dynamics, we simulate the translocation of single-stranded DNA through graphene nanopores and characterize the ionic current blockades produced by DNA nucleotides. We find that transport of single DNA strands through graphene nanopores may occur in single nucleotide steps. For certain pore geometries, hydrophobic interactions with the graphene membrane lead to a dramatic reduction in the conformational fluctuations of the nucleotides in the nanopores. Furthermore, we show that ionic current blockades produced by different DNA nucleotides are, in general, indicative of the nucleotide type, but very sensitive to the orientation of the nucleotides in the nanopore. Taken together, our simulations suggest that strand sequencing of DNA by measuring the ionic current blockades in graphene nanopores may be possible, given that the conformation of DNA nucleotides in the nanopore can be controlled through precise engineering of the nanopore surface.


Langmuir | 2016

New Insights into Peptide–Silver Nanoparticle Interaction: Deciphering the Role of Cysteine and Lysine in the Peptide Sequence

Horacio Poblete; Anirudh Agarwal; Suma S. Thomas; Cornelia Bohne; Ranjithkumar Ravichandran; Jaywant Phopase; Jeffrey Comer; Emilio I. Alarcon

We studied the interaction of four new pentapeptides with spherical silver nanoparticles. Our findings indicate that the combination of the thiol in Cys and amines in Lys/Arg residues is critical to providing stable protection for the silver surface. Molecular simulation reveals the atomic scale interactions that underlie the observed stabilizing effect of these peptides, while yielding qualitative agreement with experiment for ranking the affinity of the four pentapeptides for the silver surface.


Journal of Physical Chemistry B | 2015

The adaptive biasing force method: everything you always wanted to know but were afraid to ask.

Jeffrey Comer; James C. Gumbart; Jérôme Hénin; Tony Lelièvre; Andrew Pohorille; Christophe Chipot

In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed.


IEEE Transactions on Nanotechnology | 2010

Nanopore Sequencing: Electrical Measurements of the Code of Life

Winston Timp; Utkur Mirsaidov; Deqiang Wang; Jeffrey Comer; Aleksei Aksimentiev; G. Timp

Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the


Biophysical Journal | 2009

Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores

Jeffrey Comer; V. Dimitrov; Qian Zhao; G. Timp; Aleksei Aksimentiev

1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like ¿-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.


Nanotechnology | 2010

Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix

Utkur Mirsaidov; Jeffrey Comer; V. Dimitrov; Aleksei Aksimentiev; G. Timp

Nanoscale pores have proved useful as a means to assay DNA and are actively being developed as the basis of genome sequencing methods. Hairpin DNA (hpDNA), having both double-helical and overhanging coil portions, can be trapped in a nanopore, giving ample time to execute a sequence measurement. In this article, we provide a detailed account of hpDNA interaction with a synthetic nanopore obtained through extensive all-atom molecular dynamics simulations. For synthetic pores with minimum diameters from 1.3 to 2.2 nm, we find that hpDNA can translocate by three modes: unzipping of the double helix and--in two distinct orientations--stretching/distortion of the double helix. Furthermore, each of these modes can be selected by an appropriate choice of the pore size and voltage applied transverse to the membrane. We demonstrate that the presence of hpDNA can dramatically alter the distribution of ions within the pore, substantially affecting the ionic current through it. In experiments and simulations, the ionic current relative to that in the absence of DNA can drop below 10% and rise beyond 200%. Simulations associate the former with the double helix occupying the constriction and the latter with accumulation of DNA that has passed through the constriction.


Nucleic Acids Research | 2008

Stretching and unzipping nucleic acid hairpins using a synthetic nanopore

Q. Zhao; Jeffrey Comer; V. Dimitrov; S. Yemenicioglu; Aleksei Aksimentiev; G. Timp

It is now possible to slow and trap a single molecule of double-stranded DNA (dsDNA), by stretching it using a nanopore, smaller in diameter than the double helix, in a solid-state membrane. By applying an electric force larger than the threshold for stretching, dsDNA can be impelled through the pore. Once a current blockade associated with a translocating molecule is detected, the electric field in the pore is switched in an interval less than the translocation time to a value below the threshold for stretching. According to molecular dynamics (MD) simulations, this leaves the dsDNA stretched in the pore constriction with the base-pairs tilted, while the B-form canonical structure is preserved outside the pore. In this configuration, the translocation velocity is substantially reduced from 1 bp/10 ns to approximately 1 bp/2 ms in the extreme, potentially facilitating high fidelity reads for sequencing, precise sorting, and high resolution (force) spectroscopy.


Journal of Physics: Condensed Matter | 2014

Close encounters with DNA.

Christopher Maffeo; Jejoong Yoo; Jeffrey Comer; David B. Wells; Binquan Luan; Aleksei Aksimentiev

We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 < d < 2.3 nm is V > 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 < d < 1.5 nm, the threshold voltage collapses to V < 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.


Journal of Physical Chemistry B | 2013

Computationally efficient methodology for atomic-level characterization of dendrimer-drug complexes: A comparison of amine- and acetyl-terminated PAMAM

Ariela Vergara-Jaque; Jeffrey Comer; Luis Monsalve; Fernando D. González-Nilo; Claudia Sandoval

Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.


Biophysical Journal | 2012

DNA Base-Calling from a Nanopore Using a Viterbi Algorithm

Winston Timp; Jeffrey Comer; Aleksei Aksimentiev

PAMAM dendrimers have been widely studied as a novel means for controlled drug delivery; however, computational study of dendrimer-drug complexation is made difficult by the conformational flexibility of dendrimers and the nonspecific nature of the dendrimer-drug interactions. Conventional protocols for studying drug binding have been designed primarily for protein substrates, and, therefore, there is a need to establish new protocols to deal with the unique aspects of dendrimers. In this work, we generate cavities in generation-5 polyamidoamine (PAMAM) dendrimers at selected distances from the center of mass of the dendrimer for the insertion of the model drug: dexamethasone 21-phosphate or Dp21. The complexes are then allowed to equilibrate with distance between centers of mass of the drug and dendrimers confined to selected ranges; the free energy of complexation is estimated by the MM-GBSA (MM, molecular mechanics; GB, generalized Born; SA, surface area) method. For both amine- and modified acetyl-terminated PAMAM at both low and neutral pH, the most favorable free energy of complexation is associated with Dp21 at distance of 15-20 Å from the center of mass of the dendrimer and that smaller or larger distances yield considerably weaker affinity. In agreement with experimental results, we find acetyl-terminated PAMAM at neutral pH to form the least stable complex with Dp21. The greatest affinity is seen in the case of acetyl-terminated PAMAM at low pH, which appears to be due a complex balance of different contributions, which cannot be attributed to electrostatics, van der Waals interactions, hydrogen bonds, or charge-charge interactions alone.

Collaboration


Dive into the Jeffrey Comer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Timp

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Winston Timp

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Utkur Mirsaidov

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Ginsberg

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

James C. Gumbart

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge