Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Dvorin is active.

Publication


Featured researches published by Jeffrey D. Dvorin.


Science | 2010

A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes.

Jeffrey D. Dvorin; D. C. Martyn; Saurabh D. Patel; Joshua S. Grimley; Christine R. Collins; Christine S. Hopp; A. T. Bright; Scott J. Westenberger; Elizabeth A. Winzeler; Michael J. Blackman; David A. Baker; Thomas J. Wandless; Manoj T. Duraisingh

Its a Knockout The malaria parasite is one of the most important pathogens of humans. Increasing drug-resistance is an imminent public health disaster, and we urgently need to find new drugs. The recently acquired malarial genomes provide a plethora of targets. However, due to the genetic intractability of the parasite, it has been difficult to identify essential genes in the clinically relevant blood-stage of the parasite. Dvorin et al. (p. 910) investigated the function of a Plasmodium falciparum plant-like calcium-dependent protein kinase, PfCDPK5, which is expressed in the invasive blood-stage forms of the parasite. A system for conditional protein expression allowed the production of a functional knockout in the bloodstream stage of the parasite. PfCDPK5 was required for parasite egress from the human host erythrocyte, an essential step in the parasite life cycle. A calcium-dependent protein kinase is essential for blood-stage proliferation of the human malaria parasite. Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium falciparum, was critical for egress. Parasites deficient in PfCDPK5 arrested as mature schizonts with intact membranes, despite normal maturation of egress proteases and invasion ligands. Merozoites physically released from stalled schizonts were capable of invading new erythrocytes, separating the pathways of egress and invasion. The arrest was downstream of cyclic guanosine monophosphate–dependent protein kinase (PfPKG) function and independent of protease processing. Thus, PfCDPK5 plays an essential role during the blood stage of malaria replication.


Molecular Cell | 2001

HIV-1 Infection Requires a Functional Integrase NLS

Michèle Bouyac-Bertoia; Jeffrey D. Dvorin; Ron A.M. Fouchier; Yonchu Jenkins; Barbara Meyer; Lily I. Wu; Michael Emerman; Michael H. Malim

HIV-1 is able to infect nondividing cells productively in part because the postentry viral nucleoprotein complexes are actively imported into the nucleus. In this manuscript, we identify a novel nuclear localization signal (NLS) in the viral integrase (IN) protein that is essential for virus replication in both dividing and nondividing cells. The IN NLS stimulates the efficient nuclear accumulation of viral DNA as well as virion-derived IN protein during the initial stages of infection but is dispensable for catalytic function. Because this NLS is required for infection irrespective of target cell proliferation, we suggest that interactions between uncoated viral nucleoprotein complexes and the host cell nuclear import machinery are critical for HIV-1 infection of all cells.


Journal of Virology | 2002

Reassessment of the Roles of Integrase and the Central DNA Flap in Human Immunodeficiency Virus Type 1 Nuclear Import

Jeffrey D. Dvorin; Peter Bell; Gerd G. Maul; Masahiro Yamashita; Michael Emerman; Michael H. Malim

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.


Science | 2012

A DOC2 Protein Identified by Mutational Profiling Is Essential for Apicomplexan Parasite Exocytosis

Andrew Farrell; Sivasakthivel Thirugnanam; Alexander Lorestani; Jeffrey D. Dvorin; Keith P. Eidell; David J. P. Ferguson; Brooke R. Anderson-White; Manoj T. Duraisingh; Gabor T. Marth; Marc-Jan Gubbels

Parasite Invasion Strategy Exocytosis is essential to the lytic cycle of apicomplexan parasites and is required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca2+-dependent fashion. Farrell et al. (p. 218) describe the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress. The phenotype was explained by a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. A T. gondii Doc2 gene was identified, by whole-genome sequencing, to be involved in the secretion defect, and a conditional allele of the orthologous gene engineered into the malaria parasite, Plasmodium falciparum, also caused defects in microneme secretion. An evolutionarily conserved Ca2+-binding protein promotes parasite invasion. Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca2+-dependent fashion. Here, the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional allele of the orthologous gene engineered into Plasmodium falciparum was also defective in microneme secretion. However, the major effect was on invasion, suggesting that microneme secretion is dispensable for Plasmodium egress.


Journal of Virology | 2001

In Vivo Attenuation of Simian Immunodeficiency Virus by Disruption of a Tyrosine-Dependent Sorting Signal in the Envelope Glycoprotein Cytoplasmic Tail

Patricia N. Fultz; Patricia J. Vance; Michael J. Endres; Binli Tao; Jeffrey D. Dvorin; Ian C. Davis; Jeffrey D. Lifson; David C. Montefiori; Mark Marsh; Michael H. Malim; James A. Hoxie

ABSTRACT Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxφ) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (ΔGY). To assess the in vivo replication competence, all viruses contained a stop codon innef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239ΔGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4+ T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239ΔGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nefstop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxφ signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.


Journal of Biological Chemistry | 2008

Identification and characterization of small molecule inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.

Vishal Patel; Michael Booker; Martin Kramer; Leila Ross; Cassandra Celatka; Leah M. Kennedy; Jeffrey D. Dvorin; Manoj T. Duraisingh; Piotr Sliz; Dyann F. Wirth; Jon Clardy

Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.


Science | 2014

Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection

Dipak Kumar Raj; Christian P. Nixon; Christina E. Nixon; Jeffrey D. Dvorin; Christen G. DiPetrillo; Sunthorn Pond-Tor; Hai Wei Wu; Grant Jolly; Lauren Pischel; Ailin Lu; Ian C. Michelow; Ling Cheng; Solomon Conteh; Emily A. McDonald; Sabrina Absalon; Sarah Holte; Jennifer F. Friedman; Michal Fried; Patrick E. Duffy; Jonathan D. Kurtis

Novel vaccines are urgently needed to reduce the burden of severe malaria. Using a differential whole-proteome screening method, we identified Plasmodium falciparum schizont egress antigen-1 (PfSEA-1), a 244-kilodalton parasite antigen expressed in schizont-infected red blood cells (RBCs). Antibodies to PfSEA-1 decreased parasite replication by arresting schizont rupture, and conditional disruption of PfSEA-1 resulted in a profound parasite replication defect. Vaccination of mice with recombinant Plasmodium berghei PbSEA-1 significantly reduced parasitemia and delayed mortality after lethal challenge with the Plasmodium berghei strain ANKA. Tanzanian children with antibodies to recombinant PfSEA-1A (rPfSEA-1A) did not experience severe malaria, and Kenyan adolescents and adults with antibodies to rPfSEA-1A had significantly lower parasite densities than individuals without these antibodies. By blocking schizont egress, PfSEA-1 may synergize with other vaccines targeting hepatocyte and RBC invasion. Antibodies in Tanzanian children identify a malaria vaccine candidate that prevents within-host dispersal of blood-stage parasites Progress toward an effective malaria vaccine The history of efforts to develop a malaria vaccine has been long and difficult. Raj et al. probed for molecules produced by this blood parasite that are recognized by natural immune responses of people living in malaria-endemic areas of Africa. One, PfSEA-1, blocked parasite exit from red blood cells. Vaccination experiments with mouse malaria showed almost fourfold reduction in parasitemia; moreover, passive transfer of PfSEA-1 antibodies transferred protection from mouse to mouse. Encouragingly, the presence of PfSEA-1 antibodies correlates with significant protection from severe malaria in children and adolescents from Kenya and Tanzania. Science, this issue p. 871


Eukaryotic Cell | 2010

Suggestive Evidence for Darwinian Selection against Asparagine-Linked Glycans of Plasmodium falciparum and Toxoplasma gondii†

G. Guy Bushkin; Daniel M. Ratner; Jike Cui; Sulagna Banerjee; Manoj T. Duraisingh; Cameron V. Jennings; Jeffrey D. Dvorin; Marc-Jan Gubbels; Seth D. Robertson; Martin Steffen; Barry R. O'Keefe; Phillips W. Robbins; John Samuelson

ABSTRACT We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.


Current Topics in Microbiology and Immunology | 2003

Intracellular Trafficking of HIV-1 Cores: Journey to the Center of the Cell

Jeffrey D. Dvorin; Michael H. Malim

After entry into the cytoplasm, many diverse viruses, including both RNA and DNA viruses, require import into the nucleus and access to the cellular nuclear machinery for productive replication to proceed. Because diffusion through the crowded cytoplasmic environment is greatly restricted, most (if not all) of these viruses must first be actively transported from the site of cytoplasmic entry to the nuclear periphery (Luby-Phelps 2000; Lukacs et al. 2000; Sodeik 2000). Having reached the nucleus, viruses have evolved assorted methods to overcome the formidable physical barrier that is presented by the nuclear envelope. This review examines how these issues relate to human immunodeficiency virus type-1 (HIV-1) infection. Specifically, HIV-1 uncoating, cytoplasmic transport, and nuclear entry are addressed.


Bioorganic & Medicinal Chemistry Letters | 2009

Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors.

Carolyn K. Dong; Vishal Patel; Jimmy Chen Yang; Jeffrey D. Dvorin; Manoj T. Duraisingh; Jon Clardy; Dyann F. Wirth

Plasmodium falciparum NDH2 (pfNDH2) is a non-proton pumping, rotenone-insensitive alternative enzyme to the multi-subunit NADH:ubiquinone oxidoreductases (Complex I) of many other eukaryotes. Recombinantly expressed pfNDH2 prefers coenzyme CoQ(0) as an acceptor substrate, and can also use the artificial electron acceptors, menadione and dichlorophenol-indophenol (DCIP). Previously characterized NDH2 inhibitors, dibenziodolium chloride (DPI), diphenyliodonium chloride (IDP), and 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) do not inhibit pfNDH2 activity. Here, we provide evidence that HDQ likely targets another P. falciparum mitochondrial enzyme, dihydroorotate dehydrogenase (pfDHOD), which is essential for de novo pyrimidine biosynthesis.

Collaboration


Dive into the Jeffrey D. Dvorin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge