Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Esko is active.

Publication


Featured researches published by Jeffrey D. Esko.


Cell | 1991

Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor

Avner Yayon; Michael Klagsbrun; Jeffrey D. Esko; Philip Leder; David M. Ornitz

The role of low affinity, heparin-like binding sites for basic fibroblast growth factor (bFGF) was investigated in CHO cells mutant in their metabolism of glycosaminoglycans. Heparan sulfate-deficient mutants transfected to express a cloned mouse FGF receptor cDNA are not able to bind bFGF. It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF. These studies suggest that the low affinity receptor is an accessory molecule required for binding of bFGF to the high affinity site. Such an obligatory interaction of low and high affinity FGF receptors suggests a physiological role for heparin-like, low affinity receptors and constitutes a novel mechanism for the regulation of growth factor-receptor interactions.


Nature | 2007

HEPARAN SULPHATE PROTEOGLYCANS FINE-TUNE MAMMALIAN PHYSIOLOGY

Joseph R. Bishop; Manuela Schuksz; Jeffrey D. Esko

Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.


Nature Reviews Cancer | 2005

The sweet and sour of cancer: glycans as novel therapeutic targets.

Mark M. Fuster; Jeffrey D. Esko

A growing body of evidence supports crucial roles for glycans at various pathophysiological steps of tumour progression. Glycans regulate tumour proliferation, invasion, haematogenous metastasis and angiogenesis, and increased understanding of these roles sets the stage for developing pharmaceutical agents that target these molecules. Such novel agents might be used alone or in combination with operative and/or chemoradiation strategies for treating cancer.


Cell | 1999

A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry

Deepak Shukla; Jian Liu; Peter Blaiklock; Nicholas W. Shworak; Xiaomei Bai; Jeffrey D. Esko; Gary H. Cohen; Roselyn J. Eisenberg; Robert D. Rosenberg; Patricia G. Spear

Herpes simplex virus type 1 (HSV-1) binds to cells through interactions of viral glycoproteins gB and gC with heparan sulfate chains on cell surface proteoglycans. This binding is not sufficient for viral entry, which requires fusion between the viral envelope and cell membrane. Here, we show that heparan sulfate modified by a subset of the multiple D-glucosaminyl 3-O-sulfotransferase isoforms provides sites for the binding of a third viral glycoprotein, gD, and for initiation of HSV-1 entry. We conclude that susceptibility of cells to HSV-1 entry depends on (1) presence of heparan sulfate chains to which virus can bind and (2) 3-O-sulfation of specific glucosamine residues in heparan sulfate to generate gD-binding sites or the expression of other previously identified gD-binding receptors.


Journal of Clinical Investigation | 2001

Molecular diversity of heparan sulfate

Jeffrey D. Esko; Ulf Lindahl

Heparan sulfate (HS) appeared early in metazoan evolution. As such, many of the structural motifs (variably sulfated disaccharide subunits) that characterize HS (and heparin) were established early on and have been preserved in modern organisms. Thus, many of the biological functions associated with HS either occurred early in evolution or have depended on the subsequent evolution of the protein ligands that bind to the polysaccharide. Today, we know of literally hundreds of heparin-binding proteins, and many interactions have profound consequences in vertebrate and invertebrate physiology. This Perspective aims to provide an overview of HS structure, function, and biosynthesis and to set the stage for discussing the relationship between structure and function of these fascinating molecules and how altered HS biosynthesis and catabolism can lead to human disorders.


Cold Spring Harbor Perspectives in Biology | 2011

Heparan Sulfate Proteoglycans

Stéphane Sarrazin; William C. Lamanna; Jeffrey D. Esko

Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.


Nature Immunology | 2005

Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses.

Lianchun Wang; Mark M. Fuster; P. Sriramarao; Jeffrey D. Esko

Here we have studied the involvement of endothelial heparan sulfate in inflammation by inactivating the enzyme N-acetyl glucosamine N-deacetylase–N-sulfotransferase-1 in endothelial cells and leukocytes, which is required for the addition of sulfate to the heparin sulfate chains. Mutant mice developed normally but showed impaired neutrophil infiltration in various inflammation models. These effects were due to changes in heparan sulfate specifically in endothelial cells. Decreased neutrophil infiltration was partially due to altered rolling velocity correlated with weaker binding of L-selectin to endothelial cells. Chemokine transcytosis across endothelial cells and presentation on the cell surface were also reduced, resulting in decreased neutrophil firm adhesion and migration. Thus, endothelial heparan sulfate has three functions in inflammation: by acting as a ligand for L-selectin during neutrophil rolling; in chemokine transcytosis; and by binding and presenting chemokines at the lumenal surface of the endothelium.


Journal of Clinical Investigation | 2002

Heparin’s anti-inflammatory effects require glucosamine 6- O -sulfation and are mediated by blockade of L- and P-selectins

Lianchun Wang; Jillian R. Brown; Ajit Varki; Jeffrey D. Esko

Heparin has been used clinically as an anticoagulant and antithrombotic agent for over 60 years. Here we show that the potent anti-inflammatory property of heparin results primarily from blockade of P-selectin and L-selectin. Unfractionated heparin and chemically modified analogs were tested as inhibitors of selectin binding to immobilized sialyl Lewis(X) and of cell adhesion to immobilized selectins or thrombin-activated endothelial cells. Compared with unfractionated heparin, the modified heparinoids had inhibitory activity in this general order: over-O-sulfated heparin > heparin > 2-O,3-O-desulfated > or = N-desulfated/N-acetylated heparin > or = carboxyl-reduced heparin > or= N-,2-O,3-O-desulfated heparin >> 6-O-desulfated heparin. The heparinoids also showed similar differences in their ability to inhibit thioglycollate-induced peritonitis and oxazolone-induced delayed-type hypersensitivity. Mice deficient in P- or L-selectins showed impaired inflammation, which could be further reduced by heparin. However, heparin had no additional effect in mice deficient in both P- and L-selectins. We conclude that (a) heparins anti-inflammatory effects are mainly mediated by blocking P- and L-selectin-initiated cell adhesion; (b) the sulfate groups at C6 on the glucosamine residues play a critical role in selectin inhibition; and (c) some non-anticoagulant forms of heparin retain anti-inflammatory activity. Such analogs may prove useful as therapeutically effective inhibitors of inflammation.


Annual Review of Biochemistry | 2014

Demystifying Heparan Sulfate-Protein Interactions

Ding Xu; Jeffrey D. Esko

Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.


Development | 2005

Mice deficient in Ext2 lack heparan sulfate and develop exostoses

Dominique Stickens; Beverly M. Zak; Nathalie Rougier; Jeffrey D. Esko; Zena Werb

Hereditary multiple exostoses (HME) is a genetically heterogeneous human disease characterized by the development of bony outgrowths near the ends of long bones. HME results from mutations in EXT1 and EXT2, genes that encode glycosyltransferases that synthesize heparan sulfate chains. To study the relationship of the disease to mutations in these genes, we generated Ext2-null mice by gene targeting. Homozygous mutant embryos developed normally until embryonic day 6.0, when they became growth arrested and failed to gastrulate, pointing to the early essential role for heparan sulfate in developing embryos. Heterozygotes had a normal lifespan and were fertile; however, analysis of their skeletons showed that about one-third of the animals formed one or more ectopic bone growths (exostoses). Significantly, all of the mice showed multiple abnormalities in cartilage differentiation, including disorganization of chondrocytes in long bones and premature hypertrophy in costochondral cartilage. These changes were not attributable to a defect in hedgehog signaling, suggesting that they arise from deficiencies in other heparan sulfate-dependent pathways. The finding that haploinsufficiency triggers abnormal cartilage differentiation gives insight into the complex molecular mechanisms underlying the development of exostoses.

Collaboration


Dive into the Jeffrey D. Esko's collaboration.

Top Co-Authors

Avatar

Roger Lawrence

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Cummings

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yitzhak Tor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Grobe

University of Münster

View shared research outputs
Researchain Logo
Decentralizing Knowledge