Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Kittilson is active.

Publication


Featured researches published by Jeffrey D. Kittilson.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT, and JAK-STAT

Katie M. Reindl; Jeffrey D. Kittilson; Heather E. Bergan; Mark A. Sheridan

Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.


Molecular and Cellular Endocrinology | 2008

Somatostatin inhibits basal and growth hormone-stimulated hepatic insulin-like growth factor-I production.

Nicole M. Very; Jeffrey D. Kittilson; Sarah E. Klein; Mark A. Sheridan

Growth of vertebrates is controlled by the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system, and somatostatins (SSs) have been shown to inhibit growth by reducing the release of growth hormone (GH) from the pituitary. In this study, we used rainbow trout to assess the effects of SSs on the production of IGF-I. Somatostatin-14 (SS-14-I) implantation for 15 days significantly reduced steady-state levels of IGF-I mRNA in liver and lowered IGF-I concentration in plasma compared to control animals. The direct effects of SSs were examined on hepatocytes incubated in vitro. SS-14-I inhibited basal and GH-stimulated IGF-I mRNA expression. SS-14-I inhibition of GH-stimulated IGF-I expression was concentration- and time-dependent; the ED(50) was ca. 40 ng/ml and the maximum response was observed after 6h. All SS isofoms tested, including the N-terminally extended form of SS-14-I, SS-28-I, and the [Tyr(7), Gly(10)]-substituted forms of SS, SS-14-II, SS-25-II and SS-28-II, inhibited GH-stimulated IGF-I mRNA expression. The inhibitory effects of SS-14-I on steady-state levels of IGF-I mRNA resulted from reduced IGF-I mRNA transcription and not from altered mRNA stability. SS-14-I also reduced basal and GH-stimulated release of IGF-I into culture medium. These results indicate that SSs regulate growth in an extrapituitary manner by reducing hepatic IGF-I biosynthesis and secretion.


General and Comparative Endocrinology | 2014

Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system

Andrea M. Hanson; Jeffrey D. Kittilson; Lincoln E. Martin; Mark A. Sheridan

Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Rainbow trout (Oncorhynchus mykiss) possess two hormone-sensitive lipase-encoding mRNAs that are differentially expressed and independently regulated by nutritional state.

Jeffrey D. Kittilson; Katie M. Reindl; Mark A. Sheridan

Teleost fish store lipids among several tissues primarily as triacylglycerol (TG). Upon metabolic demand, stored TGs are hydrolyzed by hormone-sensitive lipase (HSL). In this study, two distinct cDNAs encoding HSL were isolated, cloned, and sequenced from adipose tissue of rainbow trout. The full-length cDNAs, designated HSL1 and HSL2, were 2562-bp and 2887-bp in length, respectively, and share 82% nucleotide identity. Phylogenetic analysis suggests that the two HSLs derive from paralogous genes that may have arisen during a teleost-specific genome duplication event. Quantitative real-time PCR revealed that HSL1 and HSL2 were differentially expressed, both in terms of distribution among tissues as well as in terms of abundance within selected tissues of juvenile trout. HSL1 and HSL2 mRNAs were detected in the brain, spleen, pancreas, kidney, gill, intestine, heart, and white muscle, but were most abundant in the red muscle, liver, and adipose tissue. HSL1 mRNA was more abundant than HSL2 mRNA in the adipose tissue, whereas HSL2 mRNA was more abundant than HSL1 mRNA in the liver. Short term fasting (4 weeks) increased HSL1 and HSL2 mRNA expression in the adipose tissue, but only HSL1 mRNA levels increased in the liver and the red muscle. During a prolonged fast (6 weeks), there was continued elevation of HSL1 and HSL2 mRNA levels in the liver and muscle; HSL mRNA expression in mesenteric fat declined, coincident with depletion of mesenteric fat mass. Refeeding fish reduced HSL expression to levels seen in continuously fed fish. These findings indicate that the pattern of HSL expression is consistent with the diverse lipid storage pattern of fish and suggest that distinct mechanisms serve to regulate differential expression of the two HSLs in tissues and during a progressive fast.


General and Comparative Endocrinology | 2012

Nutrition-regulated lipolysis in rainbow trout (Oncorhynchus mykiss) is associated with alterations in the ERK, PI3K-Akt, JAK-STAT, and PKC signaling pathways

Heather E. Bergan; Jeffrey D. Kittilson; Mark A. Sheridan

Previous studies have shown that food deprivation, which occurs naturally in the life cycle of many species of fish, results in cessation of growth and catabolism of stored energy reserves, including lipids. In this study, we used rainbow trout (Oncorhynchus mykiss) to identify the cellular mechanisms involved with this metabolic shift. Fish were placed on one of five dietary regimes--fed continuously for 2 or 4 weeks, fasted continuously for 2 or 4 weeks, or fasted 2 weeks then refed 2 weeks--and the effects on organismal growth and lipid catabolism and on the activation state of signaling elements (e.g., Akt, ERK, JAK-STAT, PKC) in selected tissues were measured. Fasting for either 2 or 4 weeks significantly retarded growth in terms of body weight, body length, and body condition; refeeding restored growth such that body length and body condition were similar to measures seen in continuously fed fish. Fasting activated lipid catabolism by stimulating the mRNA expression and catalytic activity of hormone-sensitive lipase (HSL). Two HSL-encoding mRNAs have been characterized, and the expression of both forms of mRNA in 2- and 4-week fasted fish were significantly elevated over levels in fed fish in all tissues. In adipose tissue, liver, and white muscle, HSL activity was significantly elevated in 2- and 4-week fasted fish compared to fed animals; whereas in red muscle, HSL activity was significantly elevated compared to fed fish after 4 weeks of fasting. Refeeding reversed both fasting-associated HSL mRNA expression and HSL activity. Fasting resulted in the deactivation of Akt, JAK2, and STAT5 in adipose tissue, liver, and red and white muscle. By contrast, fasting activated ERK and PKC in all tissues measured. Refeeding reversed fasting-associated alterations in the activation state of all signal elements. These findings suggest that deactivation of Akt and JAK-STAT in conjunction with activation of ERK and PKC underlie fasting-associated growth retardation and lipolysis.


Journal of Endocrinology | 2009

Differential ligand binding and agonist-induced regulation characteristics of the two rainbow trout GH receptors, Ghr1 and Ghr2, in transfected cells

Katie M. Reindl; Jeffrey D. Kittilson; Mark A. Sheridan

Previously, we isolated and characterized two distinct GH receptor (GHR)-encoding mRNAs, ghr1 and ghr2, from rainbow trout. In this study, Chinese hamster ovary-K1 cells were individually transfected with plasmids that contained cDNAs encoding rainbow trout ghr1 or ghr2. High affinity binding of (125)I-salmonid GH (sGH) by the expressed receptors was saturable, displaceable, and ligand selective. Whole-cell binding analysis revealed a single class of binding site; for Ghr1 K(d)=8 nM, for Ghr2 K(d)=17 nM. While salmonid prolactin (sPrl) displaced (125)I-sGH from both Ghr1 and Ghr2, the affinity of either receptor subtype for sPrl was substantially less than for sGH; salmonid somatolactin, another member of the GH-PRL family, did not displace labeled sGH except at pharmacological concentrations. (125)I-sGH was internalized by Ghr1- and Ghr2-expressing cells in a time-dependent manner; the maximum internalization reached was 71% for Ghr1 and 55% for Ghr2. Long-term exposure (24 h) of transfected cells to sGH up-regulated surface expression of both Ghr1 and Ghr2; however, sGH induced surface expression of Ghr1 to a greater extent than that of Ghr2. These results indicate that rainbow trout ghrs display both overlapping and distinct characteristics that may be important for ligand selection and differential action in target organs.


FEBS Letters | 2000

Glucose regulates pancreatic preprosomatostatin I expression

Gregory T. Melroe; Melissa M. Ehrman; Jeffrey D. Kittilson; Mark A. Sheridan

Rainbow trout were used as a model system to evaluate the role of glucose in regulating the expression of preprosomatostatin I. Glucose increased pancreatic levels of preprosomatostatin I mRNA in vivo, in concert with elevated plasma somatostatin levels, and in vitro. Glucose‐stimulated expression of preprosomatostatin I mRNA required the uptake, phosphorylation, and subsequent metabolism of the sugar in pancreatic islets. These results suggest that glucose modulates both the production and release of somatostatin.


General and Comparative Endocrinology | 2013

Evolutionary origin and divergence of the growth hormone receptor family: Insight from studies on sea lamprey

Elizabeth R. Ellens; Jeffrey D. Kittilson; Jeffrey A. Hall; Stacia A. Sower; Mark A. Sheridan

Sea lamprey, one of the oldest extant lineages of vertebrates, Agnatha, was used to clarify the evolutionary origin and divergence of the growth hormone receptor (GHR) family. A single full-length cDNA encoding a protein that shares amino acid identity with GHRs and prolactin receptors (PRLRs) previously characterized from teleost fish was identified. Expression of the GHR/PRLR-like transcript was widespread among tissues, including brain, pituitary, heart, liver, and skeletal muscle, which is consistent with the broad physiological roles of GH-family peptides. Phylogenetic analysis suggests that the lamprey possess an ancestral gene encoding a common GHR/PRLR that diverged to give rise to distinct GHRs and PRLRs later in the course of vertebrate evolution. After the divergence of the Actinopterygian and Sarcopterygian lineages, the GHR gene was duplicated in the Actinopterygian lineage during the fish-specific genome duplication event giving rise to two GHRs in teleosts, type 1 GHR and type 2 GHR. A single GHR gene orthologous to the teleost type 1 GHR persisted in the Sarcopterygian lineage, including the common ancestor of tetrapods. Within the teleosts, several subsequent independent duplication events occurred that led to several GHR subtypes. A revised nomenclature for vertebrate GHRs is proposed that represents the evolutionary history of the receptor family. Structural features of the receptor influence ligand binding, receptor dimerization, linkage to signal effector pathways, and, ultimately, hormone function.


Regulatory Peptides | 2005

Expression of somatostatin receptor mRNAs is regulated in vivo by growth hormone, insulin, and insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss)

Barton J. Slagter; Jeffrey D. Kittilson; Mark A. Sheridan

Somatostatins are a diverse family of peptide hormones that regulate various aspects of growth, development, and metabolism through interactions with numerous somatostatin receptor subtypes (SSTRs) on target tissues. In this study, we used rainbow trout to evaluate the effects of growth hormone (GH), insulin (INS), and insulin-like growth factor-I (IGF-I) on the expression of SSTR 1A, 1B and 2 mRNAs. GH regulated the expression of SSTRs in a subtype- and tissue-specific manner. GH reduced SSTR 1A, 1B, and 2 expression in optic tectum, reduced SSTR 1A and 1B expression in pancreas, reduced SSTR 1A expression in liver, and increased hepatic SSTR 1B expression. INS also regulated SSTR expression in a subtype- and tissue-specific manner. INS reduced SSTR 1B expression in optic tectum, increased SSTR 2 expression in pancreas, and increased SSTR 1B and 2 expression in liver. IGF-I generally decreased the expression of all SSTRs. These data indicate that GH, INS, and IGF-I modulate the expression of SSTRs and suggest that independent mechanisms may serve to regulate the various receptor subtypes.


Frontiers in Endocrinology | 2011

ERK, Akt, and STAT5 are differentially activated by the two growth hormone receptor subtypes of a teleost fish (Oncorhynchus mykiss)

Jeffrey D. Kittilson; Evan Jones; Mark A. Sheridan

Previously, we found that the teleost fish, rainbow trout, possesses two growth hormone receptor (GHR) subtypes that display distinct ligand-binding and agonist-induced regulation features. In this study, we used Chinese hamster ovary-K1 cells stably transfected individually with the two trout GHR subtypes, GHR1 and GHR2, to elucidate receptor–effector pathway linkages. Growth hormone (GH) stimulated rapid (5–10 min) phosphorylation of ERK, Akt, JAk2, and STAT5 in both GHR1- and GHR2-expressing cells; however; STAT5 was activated to a greater extent through GHR1 than through GHR2, whereas ERK and Akt were activated to a greater through GHR2 than through GHR1. Although blockade of the ERK pathway had no effect on the activation of Akt, inhibition of PI3K–Akt partially prevented activation of ERK, suggesting cross-talk between the ERK and PI3K–Akt pathways. JAK2 inhibition completely blocked activation of ERK, Akt, and STAT5, suggesting that all of these pathways link to GHR1 and GHR2 via JAK2. These findings establish important receptor–effector pathway linkages and suggest that the GHR subtypes of teleost fish may be functionally distinct.

Collaboration


Dive into the Jeffrey D. Kittilson's collaboration.

Top Co-Authors

Avatar

Mark A. Sheridan

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Melissa M. Ehrman

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Barton J. Slagter

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Gregory T. Melroe

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Heather E. Bergan

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Katie M. Reindl

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Andrea M. Hanson

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Craig A. Moore

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Very

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Alicia T. Ickstadt

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge