Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Rimer is active.

Publication


Featured researches published by Jeffrey D. Rimer.


Science | 2015

Crystallization by particle attachment in synthetic, biogenic, and geologic environments

James J. De Yoreo; P. U. P. A. Gilbert; Nico A. J. M. Sommerdijk; R. Lee Penn; Stephen Whitelam; Derk Joester; Hengzhong Zhang; Jeffrey D. Rimer; Alexandra Navrotsky; Jillian F. Banfield; Adam F. Wallace; F. Marc Michel; Fiona C. Meldrum; Helmut Cölfen; Patricia M. Dove

Growing crystals by attaching particles Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science, this issue 10.1126/science.aaa6760 Materials nucleate and grow by the assembly of small particles and multi-ion complexes. BACKGROUND Numerous lines of evidence challenge the traditional interpretations of how crystals nucleate and grow in synthetic and natural systems. In contrast to the monomer-by-monomer addition described in classical models, crystallization by addition of particles, ranging from multi-ion complexes to fully formed nanocrystals, is now recognized as a common phenomenon. This diverse set of pathways results from the complexity of both the free-energy landscapes and the reaction dynamics that govern particle formation and interaction. Whereas experimental observations clearly demonstrate crystallization by particle attachment (CPA), many fundamental aspects remain unknown—particularly the interplay of solution structure, interfacial forces, and particle motion. Thus, a predictive description that connects molecular details to ensemble behavior is lacking. As that description develops, long-standing interpretations of crystal formation patterns in synthetic systems and natural environments must be revisited. Here, we describe the current understanding of CPA, examine some of the nonclassical thermodynamic and dynamic mechanisms known to give rise to experimentally observed pathways, and highlight the challenges to our understanding of these mechanisms. We also explore the factors determining when particle-attachment pathways dominate growth and discuss their implications for interpreting natural crystallization and controlling nanomaterials synthesis. ADVANCES CPA has been observed or inferred in a wide range of synthetic systems—including oxide, metallic, and semiconductor nanoparticles; and zeolites, organic systems, macromolecules, and common biomineral phases formed biomimetically. CPA in natural environments also occurs in geologic and biological minerals. The species identified as being responsible for growth vary widely and include multi-ion complexes, oligomeric clusters, crystalline or amorphous nanoparticles, and monomer-rich liquid droplets. Particle-based pathways exceed the scope of classical theories, which assume that a new phase appears via monomer-by-monomer addition to an isolated cluster. Theoretical studies have attempted to identify the forces that drive CPA, as well as the thermodynamic basis for appearance of the constituent particles. However, neither a qualitative consensus nor a comprehensive theory has emerged. Nonetheless, concepts from phase transition theory and colloidal physics provide many of the basic features needed for a qualitative framework. There is a free-energy landscape across which assembly takes place and that determines the thermodynamic preference for particle structure, shape, and size distribution. Dynamic processes, including particle diffusion and relaxation, determine whether the growth process follows this preference or another, kinetically controlled pathway. OUTLOOK Although observations of CPA in synthetic systems are reported for diverse mineral compositions, efforts to establish the scope of CPA in natural environments have only recently begun. Particle-based mineral formation may have particular importance for biogeochemical cycling of nutrients and metals in aquatic systems, as well as for environmental remediation. CPA is poised to provide a better understanding of biomineral formation with a physical basis for the origins of some compositions, isotopic signatures, and morphologies. It may also explain enigmatic textures and patterns found in carbonate mineral deposits that record Earth’s transition from an inorganic to a biological world. A predictive understanding of CPA, which is believed to dominate solution-based growth of important semiconductor, oxide, and metallic nanomaterials, promises advances in nanomaterials design and synthesis for diverse applications. With a mechanism-based understanding, CPA processes can be exploited to produce hierarchical structures that retain the size-dependent attributes of their nanoscale building blocks and create materials with enhanced or novel physical and chemical properties. Major gaps in our understanding of CPA. Particle attachment is influenced by the structure of solvent and ions at solid-solution interfaces and in confined regions of solution between solid surfaces. The details of solution and solid structure create the forces that drive particle motion. However, as the particles move, the local structure and corresponding forces change, taking the particles from a regime of long-range to short-range interactions and eventually leading to particle-attachment events. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.


Science | 2010

Crystal Growth Inhibitors for the Prevention of l-Cystine Kidney Stones Through Molecular Design

Jeffrey D. Rimer; Zhihua An; Zina Zhu; Michael H. Lee; David S. Goldfarb; Jeffrey A. Wesson; Michael D. Ward

Taking the Cystine Kidney stones that form from l-cystine are much less common than those forming from calcium oxalate monohydrate, but are more likely to cause chronic kidney disease. Rimer et al. (p. 337; see the cover; see the Perspective by Coe and Asplin) designed two structural mimics for l-cystine. Atomic force microscopy showed that at low concentrations, the mimics could change the l-cystine crystal habit and inhibit overall crystal growth. These structural mimics may thus offer hope for treating cystinuria. Structural mimics for l-cystine may provide drug treatments for certain types of kidney stones. Crystallization of l-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that l-cystine dimethylester (L-CDME) and l-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {100} steps because of specific binding at the crystal surface, which frustrates the attachment of l-cystine molecules. L-CDME and L-CME produce l-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of l-cystine stones by rational design of crystal growth inhibitors.


Science | 2014

In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization

Alexandra I. Lupulescu; Jeffrey D. Rimer

Crystal Growth Two main routes for the growth of crystalline species are either via molecule-by-molecule attachment to existing nuclei or via the addition of preformed metastable precursors, but do these mechanisms need to be mutually exclusive? Lupulescu and Rimer (p. 729; see the Perspective by Dandekar and Doherty) developed an in situ atomic force microscopy (AFM) technique to study the crystallization of materials under extreme conditions of temperature (25° to 300°C) and alkalinity (up to a pH of 13). The growth of the zeolite silicalite-1 involved both the attachment of metastable precursors and of individual molecules. Silicalite-1 growth occurs via the addition of silica molecules and precursors, confirming both main theories. [Also see Perspective by Dandekar and Doherty] The growth mechanism of silicalite-1 (MFI zeolite) is juxtaposed between classical models that postulate silica molecules as primary growth units and nonclassical pathways based on the aggregation of metastable silica nanoparticle precursors. Although experimental evidence gathered over the past two decades suggests that precursor attachment is the dominant pathway, direct validation of this hypothesis and the relative roles of molecular and precursor species has remained elusive. We present an in situ study of silicalite-1 crystallization at characteristic synthesis conditions. Using time-resolved atomic force microscopy images, we observed silica precursor attachment to crystal surfaces, followed by concomitant structural rearrangement and three-dimensional growth by accretion of silica molecules. We confirm that silicalite-1 growth occurs via the addition of both silica molecules and precursors, bridging classical and nonclassical mechanisms.


Journal of the American Chemical Society | 2013

Controlling crystal polymorphism in organic-free synthesis of Na-zeolites.

Miguel Maldonado; Matthew D. Oleksiak; Sivadinarayana Chinta; Jeffrey D. Rimer

Controlling polymorphism is critical in areas such as pharmaceuticals, biomineralization, and catalysis. Notably, the formation of unwanted polymorphs is a ubiquitous problem in zeolite synthesis. In this study, we propose a new platform for controlling polymorphism in organic-free Na-zeolite synthesis that enables crystal composition and properties to be tailored without sacrificing crystal phase purity. Through systematic adjustment of multiple synthesis parameters, we identified ternary (kinetic) phase diagrams at specific compositions (i.e., Si, Al, and NaOH mole fractions) using colloidal silica and sodium aluminate. Our studies identify multiple stages of zeolite phase transformations involving the framework types FAU, LTA, EMT, GIS, SOD, ANA, CAN, and JBW. We report an initial amorphous-to-crystalline transition of core-shell particles (silica core and alumina shell) to low-density framework types and their subsequent transformation to more dense structures with increasing temperature and/or time. We show that reduced water content facilitates the formation of structures such as EMT that are challenging to synthesize in organic-free media and reduces the synthesis temperature required to achieve higher-density framework types. A hypothesis is proposed for the sequence of phase transformations that is consistent with the Ostwald rule of stages, wherein metastable structures dissolve and recrystallize into more thermodynamically stable structures. The ternary diagrams developed here are a broadly applicable platform for rational design that offers an alternative to time- and cost-intensive methods of ad hoc parameter selection without a priori knowledge of crystal phase behavior.


Journal of the American Chemical Society | 2013

A Facile Strategy To Design Zeolite L Crystals with Tunable Morphology and Surface Architecture

Alexandra I. Lupulescu; Manjesh Kumar; Jeffrey D. Rimer

Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.


Journal of the American Chemical Society | 2015

SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control

Manjesh Kumar; Helen Y. Luo; Yuriy Román-Leshkov; Jeffrey D. Rimer

Many synthetic and natural crystalline materials are either known or postulated to grow via nonclassical pathways involving the initial self-assembly of precursors that serve as putative growth units for crystallization. Elucidating the pathway(s) by which precursors attach to crystal surfaces and structurally rearrange (postattachment) to incorporate into the underlying crystalline lattice is an active and expanding area of research comprising many unanswered fundamental questions. Here, we examine the crystallization of SSZ-13, which is an aluminosilicate zeolite that possesses exceptional physicochemical properties for applications in separations and catalysis (e.g., methanol upgrading to chemicals and the environmental remediation of NO(x)). We show that SSZ-13 grows by two concerted mechanisms: nonclassical growth involving the attachment of amorphous aluminosilicate particles to crystal surfaces and classical layer-by-layer growth via the incorporation of molecules to advancing steps on the crystal surface. A facile, commercially viable method of tailoring SSZ-13 crystal size and morphology is introduced wherein growth modifiers are used to mediate precursor aggregation and attachment to crystal surfaces. We demonstrate that small quantities of polymers can be used to tune crystal size over 3 orders of magnitude (0.1-20 μm), alter crystal shape, and introduce mesoporosity. Given the ubiquitous presence of amorphous precursors in a wide variety of microporous crystals, insight of the SSZ-13 growth mechanism may prove to be broadly applicable to other materials. Moreover, the ability to selectively tailor the physical properties of SSZ-13 crystals through molecular design offers new routes to optimize their performance in a wide range of commercial applications.


Journal of the American Chemical Society | 2014

Specificity of Growth Inhibitors and their Cooperative Effects in Calcium Oxalate Monohydrate Crystallization

Sahar Farmanesh; Sriram Ramamoorthy; Jihae Chung; John R. Asplin; Pankaj Karande; Jeffrey D. Rimer

The molecular recognition and interactions governing site-specific adsorption of growth inhibitors on crystal surfaces can be tailored in order to control the anisotropic growth rates and physical properties of crystalline materials. Here we examine this phenomenon in calcium oxalate monohydrate (COM) crystallization, a model system of calcification with specific relevance for pathological mineralization. We analyzed the effect of three putative growth inhibitors--chondroitin sulfate, serum albumin, and transferrin--using analytical techniques capable of resolving inhibitor-crystal interactions from interfacial to bulk scales. We observed that each inhibitor alters surface growth by adsorbing on to distinct steps emanating from screw dislocations on COM surfaces. Binding of inhibitors to different crystallographic faces produced morphological modifications that are consistent with classical mechanisms of layer-by-layer crystal growth inhibition. The site-specific adsorption of inhibitors on COM surfaces was confirmed by bulk crystallization, fluorescent confocal microscopy, and atomic force microscopy. Kinetic studies of COM growth at varying inhibitor concentrations revealed marked differences in their efficacy and potency. Systematic analysis of inhibitor combinations, quantified via the combination index, identified various binary pairings capable of producing synergistic, additive, and antagonistic effects. Collectively, our investigation of physiologically relevant biomolecules suggests potential roles of COM inhibitors in pathological crystallization and provides guiding principles for biomimetic design of molecular modifiers for applications in crystal engineering.


Reviews in Chemical Engineering | 2014

Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism

Matthew D. Oleksiak; Jeffrey D. Rimer

Abstract Organic structure-directing agents (OSDAs) are commonly avoided in commercial zeolite synthesis because of the economic and environmental disadvantages associated with the synthesis and removal of organics occluded within zeolite micropores. Zeolite crystallization in OSDA-free media is the route by which microporous clays form in nature, and it is also the preferred method of producing zeolites in bulk for a wide range of applications. There are many synthesis parameters that influence zeolite crystallization, among which include the molar fractions of reagents (silica, alumina, and hydroxide ions), water content, temperature, synthesis aging and heating time, the selection of extraframework cations, the choice of silica and alumina sources, and the use of crystal seeds. In this review, we discuss zeolite framework types that form in OSDA-free solutions at these different synthesis conditions in an effort to highlight structure-property relationships while simultaneously emphasizing the areas where further studies are needed to optimize and/or discover new materials. Interestingly, fewer than 15% of the total reported zeolite structures have been prepared in the absence of OSDAs. For many of these structures, fundamental mechanisms governing their formation are not well understood. In addition, OSDA-free syntheses tend to be more susceptible to the formation of crystal polymorphs (or impurities) that can be generated through a series of structural transformations during the course of zeolite growth. Here we examine the driving forces for phase transitions and explore methods to control phase selection and polymorphism. In order to better facilitate comparisons among zeolite synthesis parameters, we have reinstituted the approach of using kinetic phase diagrams to identify conditions of phase stability.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine

Katy N. Olafson; Megan A. Ketchum; Jeffrey D. Rimer; Peter G. Vekilov

Significance Approximately 40% of the global population is at risk for malaria infection and 300–660 million clinical episodes of Plasmodium falciparum malaria occur annually. During the malaria parasite lifecycle in human erythrocytes, heme released during hemoglobin catabolism is detoxified by sequestration into crystals. Many of the common antimalarials are believed to suppress the parasite by inhibiting hematin crystallization. We present, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and antimalarial drug action as crystal growth inhibitors. These findings enable the identification and optimization of functional moieties that bind to crystal surface sites, thus providing unique guidelines for the discovery of novel antimalarials to combat increased parasite resistance to current drugs. Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼104× less than hematin’s physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.


ACS Nano | 2015

Epitaxial Growth of ZSM-5@Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity

Arian Ghorbanpour; Abhishek Gumidyala; Lars C. Grabow; Steven Crossley; Jeffrey D. Rimer

The design of materials with spatially controlled chemical composition has potential advantages for wide-reaching applications that span energy to medicine. Here, we present a method for preparing a core-shell aluminosilicate zeolite with continuous translational symmetry of nanopores and an epitaxial shell of tunable thickness that passivates Brønsted acid sites associated with framework Al on exterior surfaces. For this study, we selected the commercially relevant MFI framework type and prepared core-shell particles consisting of an aluminosilicate core (ZSM-5) and a siliceous shell (silicalite-1). Transmission electron microscopy and gas adsorption studies confirmed that silicalite-1 forms an epitaxial layer on ZSM-5 crystals without blocking pore openings. Scanning electron microscopy and dynamic light scattering were used in combination to confirm that the shell thickness can be tailored with nanometer resolution (e.g., 5-20 nm). X-ray photoelectron spectroscopy and temperature-programmed desorption measurements revealed the presence of a siliceous shell, while probe reactions using molecules that were either too large or adequately sized to access MFI pores confirmed the uniform shell coverage. The synthesis of ZSM-5@silicalite-1 offers a pathway for tailoring the physicochemical properties of MFI-type materials, notably in the area of catalysis, where surface passivation can enhance product selectivity without sacrificing catalyst activity. The method described herein may prove to be a general platform for zeolite core-shell design with potentially broader applicability to other porous materials.

Collaboration


Dive into the Jeffrey D. Rimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Li

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge