Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Singer is active.

Publication


Featured researches published by Jeffrey D. Singer.


Nature | 2012

BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs

Rebecca Mathew; Michael Seiler; Seth T. Scanlon; Ai-Ping Mao; Michael G. Constantinides; Clara Bertozzi-Villa; Jeffrey D. Singer; Albert Bendelac

The differentiation of several T- and B-cell effector programs in the immune system is directed by signature transcription factors that induce rapid epigenetic remodelling. Here we report that promyelocytic leukaemia zinc finger (PLZF), the BTB-zinc finger (BTB-ZF) transcription factor directing the innate-like effector program of natural killer T-cell thymocytes, is prominently associated with cullin 3 (CUL3), an E3 ubiquitin ligase previously shown to use BTB domain-containing proteins as adaptors for substrate binding. PLZF transports CUL3 to the nucleus, where the two proteins are associated within a chromatin-modifying complex. Furthermore, PLZF expression results in selective ubiquitination changes of several components of this complex. CUL3 was also found associated with the BTB-ZF transcription factor BCL6, which directs the germinal-centre B cell and follicular T-helper cell programs. Conditional CUL3 deletion in mice demonstrated an essential role for CUL3 in the development of PLZF- and BCL6-dependent lineages. We conclude that distinct lineage-specific BTB-ZF transcription factors recruit CUL3 to alter the ubiquitination pattern of their associated chromatin-modifying complex. We propose that this new function is essential to direct the differentiation of several T- and B-cell effector programs, and may also be involved in the oncogenic role of PLZF and BCL6 in leukaemias and lymphomas.


Journal of Clinical Investigation | 2014

Hyperkalemic hypertension–associated cullin 3 promotes WNK signaling by degrading KLHL3

James A. McCormick; Chao Ling Yang; Chong Zhang; Brittney Davidge; Katharina I. Blankenstein; Andrew S. Terker; Bethzaida Yarbrough; Nicholas P. Meermeier; Hae J. Park; Belinda H. McCully; Mark West; Aljona Borschewski; Nina Himmerkus; Markus Bleich; S. Bachmann; Kerim Mutig; Eduardo R. Argaiz; Gerardo Gamba; Jeffrey D. Singer; David H. Ellison

Familial hyperkalemic hypertension (FHHt) is a monogenic disease resulting from mutations in genes encoding WNK kinases, the ubiquitin scaffold protein cullin 3 (CUL3), or the substrate adaptor kelch-like 3 (KLHL3). Disease-associated CUL3 mutations abrogate WNK kinase degradation in cells, but it is not clear how mutant forms of CUL3 promote WNK stability. Here, we demonstrated that an FHHt-causing CUL3 mutant (CUL3 Δ403-459) not only retains the ability to bind and ubiquitylate WNK kinases and KLHL3 in cells, but is also more heavily neddylated and activated than WT CUL3. In cells, activated CUL3 Δ403-459 depleted KLHL3, preventing WNK degradation, despite increased CUL3-mediated WNK ubiquitylation; therefore, CUL3 loss in kidney should phenocopy FHHt in murine models. As predicted, nephron-specific deletion of Cul3 in mice did increase WNK kinase levels and the abundance of phosphorylated Na-Cl cotransporter (NCC). Over time, however, Cul3 deletion caused renal dysfunction, including hypochloremic alkalosis, diabetes insipidus, and salt-sensitive hypotension, with depletion of sodium potassium chloride cotransporter 2 and aquaporin 2. Moreover, these animals exhibited renal inflammation, fibrosis, and increased cyclin E. These results indicate that FHHt-associated CUL3 Δ403-459 targets KLHL3 for degradation, thereby preventing WNK degradation, whereas general loss of CUL3 activity - while also impairing WNK degradation - has widespread toxic effects in the kidney.


Journal of Clinical Investigation | 2010

Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice.

Kathryn Claiborn; Mira M. Sachdeva; Corey E. Cannon; David N. Groff; Jeffrey D. Singer; Doris A. Stoffers

The homeodomain transcription factor pancreatic duodenal homeobox 1 (Pdx1) is a major mediator of insulin transcription and a key regulator of the β cell phenotype. Heterozygous mutations in PDX1 are associated with the development of diabetes in humans. Understanding how Pdx1 expression levels are controlled is therefore of intense interest in the study and treatment of diabetes. Pdx1 C terminus-interacting factor-1 (Pcif1, also known as SPOP) is a nuclear protein that inhibits Pdx1 transactivation. Here, we show that Pcif1 targets Pdx1 for ubiquitination and proteasomal degradation. Silencing of Pcif1 increased Pdx1 protein levels in cultured mouse β cells, and Pcif1 heterozygosity normalized Pdx1 protein levels in Pdx1(+/-) mouse islets, thereby increasing expression of key Pdx1 transcriptional targets. Remarkably, Pcif1 heterozygosity improved glucose homeostasis and β cell function and normalized β cell mass in Pdx1(+/-) mice by modulating β cell survival. These findings indicate that in adult mouse β cells, Pcif1 limits Pdx1 protein accumulation and thus the expression of insulin and other gene targets important in the maintenance of β cell mass and function. They also provide evidence that targeting the turnover of a pancreatic transcription factor in vivo can improve glucose homeostasis.


Molecular Pharmacology | 2012

Designing calcium release channel inhibitors with enhanced electron donor properties: stabilizing the closed state of ryanodine receptor type 1.

Yanping Ye; Daniel Yaeger; Laura J. Owen; Jorge O. Escobedo; Jialu Wang; Jeffrey D. Singer; Robert M. Strongin; Jonathan J. Abramson

New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.


Neural Development | 2015

Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex

Ivan Gladwyn-Ng; Shan Shan Li; Zhengdong Qu; John Michael Davis; Linh Ngo; Matilda Haas; Jeffrey D. Singer; Julian Ik-Tsen Heng

BackgroundDuring fetal brain development in mammals, newborn neurons undergo cell migration to reach their appropriate positions and form functional circuits. We previously reported that the atypical RhoA GTPase Rnd2 promotes the radial migration of mouse cerebral cortical neurons (Nature 455(7209):114–8, 2008; Neuron 69(6):1069–84, 2011), but its downstream signalling pathway is not well understood.ResultsWe have identified BTB-domain containing adaptor for Cul3-mediated RhoA degradation 2 (Bacurd2) as a novel interacting partner to Rnd2, which promotes radial migration within the developing cerebral cortex. We find that Bacurd2 binds Rnd2 at its C-terminus, and this interaction is critical to its cell migration function. We show that forced expression or knockdown of Bacurd2 impairs neuronal migration within the embryonic cortex and alters the morphology of immature neurons. Our in vivo cellular analysis reveals that Bacurd2 influences the multipolar-to-bipolar transition of radially migrating neurons in a cell autonomous fashion. When we addressed the potential signalling relationship between Bacurd2 and Rnd2 using a Bacurd2-Rnd2 chimeric construct, our results suggest that Bacurd2 and Rnd2 could interact to promote radial migration within the embryonic cortex.ConclusionsOur studies demonstrate that Bacurd2 is a novel player in neuronal development and influences radial migration within the embryonic cerebral cortex.


Journal of Experimental Medicine | 2017

Myeloid-derived cullin 3 promotes STAT3 phosphorylation by inhibiting OGT expression and protects against intestinal inflammation

Xinghui Li; Zhibin Zhang; Lupeng Li; Wei Gong; Audrey J. Lazenby; Benjamin Swanson; Laura E. Herring; John M. Asara; Jeffrey D. Singer; Haitao Wen

Signal transducer and activator of transcription 3 (STAT3) is a key mediator of intestinal inflammation and tumorigenesis. However, the molecular mechanism that modulates STAT3 phosphorylation and activation is not fully understood. Here, we demonstrate that modification of STAT3 with O-linked &bgr;-N-acetylglucosamine (O-GlcNAc) on threonine 717 (T717) negatively regulates its phosphorylation and targets gene expression in macrophages. We further found that cullin 3 (CUL3), a cullin family E3 ubiquitin ligase, down-regulates the expression of the O-GlcNAc transferase (OGT) and inhibits STAT3 O-GlcNAcylation. The inhibitory effect of CUL3 on OGT expression is dependent on nuclear factor E2–related factor-2 (Nrf2), which binds to the Ogt promoter region and increases gene transcription. Myeloid deletion of Cul3 led to defective STAT3 phosphorylation in colon macrophages, which was accompanied by exacerbated colonic inflammation and inflammation-driven tumorigenesis. Thus, this study identifies a new form of posttranslational modification of STAT3, modulating its phosphorylation, and suggests the importance of immunometabolism on colonic inflammation and tumorigenesis.


Journal of Experimental Medicine | 2014

A negative feedback loop mediated by the Bcl6–cullin 3 complex limits Tfh cell differentiation

Rebecca Mathew; Ai Ping Mao; Andrew H. Chiang; Clara Bertozzi-Villa; Jeffrey J. Bunker; Seth T. Scanlon; Benjamin D. McDonald; Michael G. Constantinides; Kristin Hollister; Jeffrey D. Singer; Alexander L. Dent; Aaron R. Dinner; Albert Bendelac

Bcl6 and E3 ligase cullin 3 complexes mediate negative feedback regulation during thymocyte development and T cell activation to restrain exaggerated Tfh responses.


Cell Cycle | 2012

B-Myb promotes S-phase independently of its sequence-specific DNA binding activity and interacts with polymerase delta-interacting protein 1 (Pdip1)

Eugen Werwein; Thore Schmedt; Heiko Hoffmann; Clemens Usadel; Nora Obermann; Jeffrey D. Singer; Karl-Heinz Klempnauer

B-Myb is a highly conserved member of the Myb transcription factor family, which plays an essential role in cell cycle progression by regulating the transcription of genes at the G2/M-phase boundary. The role of B-Myb in other parts of the cell cycle is less well-understood. By employing siRNA-mediated silencing of B-Myb expression, we found that B-Myb is required for efficient entry into S-phase. Surprisingly, a B-Myb mutant that lacks sequence-specific DNA-binding activity and is unable to activate transcription of B-Myb target genes is able to rescue the S-phase defect observed after B-Myb knockdown. Moreover, we have identified polymerase delta-interacting protein 1 (Pdip1), a BTB domain protein known to bind to the DNA replication and repair factor PCNA as a novel B-Myb interaction partner. We have shown that Pdip1 is able to interact with B-Myb and PCNA simultaneously. In addition, we found that a fraction of endogenous B-Myb can be co-precipitated via PCNA, suggesting that B-Myb might be involved in processes related to DNA replication or repair. Taken together, our work suggests a novel role for B-Myb in S-phase that appears to be independent of its sequence-specific DNA-binding activity and its ability to stimulate the expression of bona fide B-Myb target genes.


Biochemical and Biophysical Research Communications | 2016

Degradation by Cullin 3 and effect on WNK kinases suggest a role of KLHL2 in the pathogenesis of Familial Hyperkalemic Hypertension.

Chong Zhang; Nicholas P. Meermeier; Andrew S. Terker; Katharina I. Blankenstein; Jeffrey D. Singer; Juliette Hadchouel; David H. Ellison; Chao Ling Yang

Mutations in WNK1 and WNK4, and in components of the Cullin-Ring Ligase system, kelch-like 3 (KLHL3) and Cullin 3 (CUL3), can cause the rare hereditary disease, Familial Hyperkalemic Hypertension (FHHt). The disease is characterized by overactivity of the renal sodium chloride cotransporter (NCC), which is phosphorylated and activated by the WNK-stimulated Ste20-type kinases, SPAK and OSR1. WNK kinases themselves can be targeted for ubiquitination and degradataion by the CUL3-KLHL3 E3 ubiquitin ligase complex. It is unclear, however, why there are significant differences in phenotypic severity among FHHt patients with mutations in different genes. It was reported that kelch-like 2 (KLHL2), a homolog of KLHL3, can also target WNK kinases for ubiquitation and degradation, and may play a special role in the systemic vasculature. Our recent study revealed the disease mutant CUL3 exhibits enhanced degradation of its adaptor protein KLHL3, potentially resulting in accumulation of WNK kinases secondarily. To investigate if KLHL2 plays a role in FHHt, we studied the effect of wild type and FHHt mutant CUL3 on degradation of KLHL2 and WNK kinase proteins in HEK293 cells. Although CUL3 facilitates KLHL2 degradation, the disease mutant CUL3 is more active in this regard. KLHL2 facilitated the degradation of wild type but not disease mutant WNK4 protein. These results suggest that KLHL2 likely plays a role in the pathogenesis of FHHt, and aggravates the phenotype caused by mutations in CUL3 and WNK4.


JCI insight | 2017

Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects

Mohammed Zubaerul Ferdaus; Lauren N. Miller; Larry N. Agbor; Turgay Saritas; Jeffrey D. Singer; Curt D. Sigmund; James A. McCormick

Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1-related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl- cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial-specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl- cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9-mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.

Collaboration


Dive into the Jeffrey D. Singer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Bertozzi-Villa

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth T. Scanlon

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Mathew

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge