Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey E. Green is active.

Publication


Featured researches published by Jeffrey E. Green.


Oncogene | 2000

The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting{

Robert D. Cardiff; Miriam R. Anver; Barry A. Gusterson; Lothar Hennighausen; Roy A. Jensen; Maria J. Merino; Sabine Rehm; Jose Russo; Fattaneh A. Tavassoli; Lalage M. Wakefield; Jerrold M. Ward; Jeffrey E. Green

NIH sponsored a meeting of medical and veterinary pathologists with mammary gland expertise in Annapolis in March 1999. Rapid development of mouse mammary models has accentuated the need for definitions of the mammary lesions in genetically engineered mice (GEM) and to assess their usefulness as models of human breast disease. The panel of nine pathologists independently reviewed material representing over 90% of the published systems. The GEM tumors were found to have: (1) phenotypes similar to those of non-GEM; (2) signature phenotypes specific to the transgene; and (3) some morphological similarities to the human disease. The current mouse mammary and human breast tumor classifications describe the majority of GEM lesions but unique morphologic lesions are found in many GEM. Since little information is available on the natural history of GEM lesions, a simple morphologic nomenclature is proposed that allows direct comparisons between models. Future progress requires rigorous application of guidelines covering pathologic examination of the mammary gland and the whole animal. Since the phenotype of the lesions is an essential component of their molecular pathology, funding agencies should adopt policies ensuring careful morphological evaluation of any funded research involving animal models. A pathologist should be part of each research team.


Journal of Clinical Investigation | 2002

Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects

Yu an Yang; Oksana Dukhanina; Binwu Tang; Mizuko Mamura; John J. Letterio; Jennifer MacGregor; Sejal C. Patel; Shahram Khozin; Zi Yao Liu; Jeffrey E. Green; Miriam R. Anver; Glenn Merlino; Lalage M. Wakefield

TGF-betas play diverse and complex roles in many biological processes. In tumorigenesis, they can function either as tumor suppressors or as pro-oncogenic factors, depending on the stage of the disease. We have developed transgenic mice expressing a TGF-beta antagonist of the soluble type II TGF-beta receptor:Fc fusion protein class, under the regulation of the mammary-selective MMTV-LTR promoter/enhancer. Biologically significant levels of antagonist were detectable in the serum and most tissues of this mouse line. The mice were resistant to the development of metastases at multiple organ sites when compared with wild-type controls, both in a tail vein metastasis assay using isogenic melanoma cells and in crosses with the MMTV-neu transgenic mouse model of metastatic breast cancer. Importantly, metastasis from endogenous mammary tumors was suppressed without any enhancement of primary tumorigenesis. Furthermore, aged transgenic mice did not exhibit the severe pathology characteristic of TGF-beta null mice, despite lifetime exposure to the antagonist. The data suggest that in vivo the antagonist may selectively neutralize the undesirable TGF-beta associated with metastasis, while sparing the regulatory roles of TGF-betas in normal tissues. Thus this soluble TGF-beta antagonist has potential for long-term clinical use in the prevention of metastasis.


Cancer Research | 2008

Identification of Tumor-initiating Cells in a p53 Null Mouse Model of Breast Cancer

Mei Zhang; Fariba Behbod; Rachel L. Atkinson; Melissa D. Landis; Frances S. Kittrell; David Edwards; Daniel Medina; Anna Tsimelzon; Susan G. Hilsenbeck; Jeffrey E. Green; Aleksandra M. Michalowska; Jeffrey M. Rosen

Using a syngeneic p53-null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified, by limiting dilution transplantation and in vitro mammosphere assay, a Lin(-)CD29(H)CD24(H) subpopulation of tumor-initiating cells. Upon subsequent transplantation, this subpopulation generated heterogeneous tumors that displayed properties similar to the primary tumor. Analysis of biomarkers suggests the Lin(-)CD29(H)CD24(H) subpopulation may have arisen from a bipotent mammary progenitor. Differentially expressed genes in the Lin(-)CD29(H)CD24(H) mouse mammary gland tumor-initiating cell population include those involved in DNA damage response and repair, as well as genes involved in epigenetic regulation previously shown to be critical for stem cell self-renewal. These studies provide in vitro and in vivo data that support the cancer stem cell (CSC) hypothesis. Furthermore, this p53-null mouse mammary tumor model may allow us to identify new CSC markers and to test the functional importance of these markers.


Oncogene | 2000

The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma.

Jeffrey E. Green; Masa-Aki Shibata; Katsuhide Yoshidome; Min-Ling Liu; Cheryl L. Jorcyk; Miriam R. Anver; Jon M. Wigginton; Robert H. Wiltrout; Eiko Shibata; Stanislaw J. Kaczmarczyk; Weili Wang; Zi-yao Liu; Alfonso Calvo; Christine Couldrey

The 5′ flanking region of the C3(1) component of the rat prostate steroid binding protein (PSBP) has been used to successfully target the expression of the SV40 large T-antigen (Tag) to the epithelium of both the mammary and prostate glands resulting in models of mammary and prostate cancers which histologically resemble the human diseases. Atypia of the mammary ductal epithelium develops at about 8 weeks of age, progressing to mammary intraepithelial neoplasia (resembling human ductal carcinoma in situ [DCIS]) at about 12 weeks of age with the development of invasive carcinomas at about 16 weeks of age in 100% of female mice. The carcinomas share features to what has been classified in human breast cancer as infiltrating ductal carcinomas. All FVB/N female mice carrying the transgene develop mammary cancer with about a 15% incidence of lung metastases. Approximately 10% of older male mice develop anaplastic mammary carcinomas. Unlike many other transgenic models in which hormones and pregnancy are used to induce a mammary phenotype, C3(1)/Tag mice develop mammary tumors in the mammary epithelium of virgin animals without hormone supplementation or pregnancy. Although mammary tumor development appears hormone-responsive at early stages, invasive carcinomas are hormone-independent, which corresponds to the loss of estrogen receptor-α expression during tumor progression. Molecular and biologic factors related to mammary tumor progression can be studied in this model since lesions evolve over a predictable time course. Genomic alterations have been identified during tumor progression, including an amplification of the distal portion of chromosome 6 containing ki-ras and loss of heterozygosity (LOH) in other chromosomal regions. We have demonstrated that stage specific alterations in the expression of genes which are critical regulators of the cell cycle and apoptosis are functionally important in vivo. C3(1)/Tag mice appear useful for testing particular therapies since growth of the mammary tumors can be reduced using chemopreventive agents, cytokines, and an anti-angiogenesis agent.


The EMBO Journal | 1999

Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage.

Masa‐Aki Shibata; Min-Ling Liu; Michael C. Knudson; Eiko Shibata; Katsuhide Yoshidome; Tabassum Bandey; Stanley J. Korsmeyer; Jeffrey E. Green

The dramatic increase in apoptosis observed during the development of preneoplastic mammary lesions is associated with a significant elevation in Bax expression in C3(1)/SV40 large T antigen (TAg) transgenic mice. The significance of Bax expression during tumor progression in vivo was studied by generating double‐transgenic mice carrying the C3(1)/TAg transgene and mutant alleles for bax. C3(1)/TAg transgenic mice carrying mutant bax alleles exhibited accelerated rates of tumor growth, increased tumor numbers, larger tumor mass and decreased survival rates compared with mice carrying wild‐type bax. Accelerated tumorigenesis associated with the bax+/− genotype did not require the loss of function of the second bax allele. Thus, haploid insufficiency of bax is enough to accelerate tumor progression, suggesting that the protective effect of Bax is dose‐dependent. While levels of apoptosis in the preneoplastic lesions, but not carcinomas, were reduced in bax+/− or bax−/− mice compared with bax+/+ mice, rates of cellular proliferation in mammary lesions were similar among all bax genotypes. These data demonstrate that bax is a critical suppressor of mammary tumor progression at the stage of preneoplastic mammary lesion development through the upregulation of apoptosis, but that this protective effect is lost during the transition from preneoplasia to invasive carcinoma.


Cancer Research | 2007

Inhibition of Prostate Cancer Growth by Muscadine Grape Skin Extract and Resveratrol through Distinct Mechanisms

Tamaro Hudson; Diane K. Hartle; Stephen D. Hursting; Nomeli P. Nunez; Thomas T.Y. Wang; Heather A. Young; Praveen R. Arany; Jeffrey E. Green

The phytochemical resveratrol contained in red grapes has been shown to inhibit prostate cancer cell growth, in part, through its antioxidant activity. Muscadine grapes contain unique phytochemical constituents compared with other grapes and are potentially a source for novel compounds with antitumor activities. We compared the antitumor activities of muscadine grape skin extract (MSKE), which we show contains no resveratrol, with that of resveratrol using primary cultures of normal prostate epithelial cells (PrEC) and the prostate cancer cell lines RWPE-1, WPE1-NA22, WPE1-NB14, and WPE1-NB26, representing different stages of prostate cancer progression. MSKE significantly inhibited tumor cell growth in all transformed prostate cancer cell lines but not PrEC cells. Prostate tumor cell lines, but not PrEC cells, exhibited high rates of apoptosis in response to MSKE through targeting of the phosphatidylinositol 3-kinase-Akt and mitogen-activated protein kinase survival pathways. The reduction in Akt activity by MSKE is mediated through a reduction in Akt transcription, enhanced proteosome degradation of Akt, and altered levels of DJ-1, a known regulator of PTEN. In contrast to MSKE, resveratrol did not induce apoptosis in this model but arrested cells at the G(1)-S phase transition of the cell cycle associated with increased expression of p21 and decreased expression of cyclin D1 and cyclin-dependent kinase 4 proteins. These results show that MSKE and resveratrol target distinct pathways to inhibit prostate cancer cell growth in this system and that the unique properties of MSKE suggest that it may be an important source for further development of chemopreventive or therapeutic agents against prostate cancer.


Cancer Research | 2007

Bmi-1 Cooperates with H-Ras to Transform Human Mammary Epithelial Cells via Dysregulation of Multiple Growth-Regulatory Pathways

Sonal Datta; Mark J. Hoenerhoff; Prashant Bommi; Rachana Sainger; Wei Jian Guo; Manjari Dimri; Hamid Band; Vimla Band; Jeffrey E. Green; Goberdhan P. Dimri

Elevated expression of Bmi-1 is associated with many cancers, including breast cancer. Here, we examined the oncogenic potential of Bmi-1 in MCF10A cells, a spontaneously immortalized, nontransformed strain of human mammary epithelial cells (HMEC). Bmi-1 overexpression alone in MCF10A cells did not result in oncogenic transformation. However, Bmi-1 co-overexpression with activated H-Ras (RasG12V) resulted in efficient transformation of MCF10A cells in vitro. Although early-passage H-Ras-expressing MCF10A cells were not transformed, late-passage H-Ras-expressing cells exhibited features of transformation in vitro. Early- and late-passage H-Ras-expressing cells also differed in levels of expression of H-Ras and Ki-67, a marker of proliferation. Subsets of early-passage H-Ras-expressing cells exhibited high Ras expression and were negative for Ki-67, whereas most late-passage H-Ras-expressing cells expressed low levels of Ras and were Ki-67 positive. Injection of late-passage H-Ras-expressing cells in severe combined immunodeficient mice formed carcinomas with leiomatous, hemangiomatous, and mast cell components; these tumors were quite distinct from those induced by late-passage cells co-overexpressing Bmi-1 and H-Ras, which formed poorly differentiated carcinomas with spindle cell features. Bmi-1 and H-Ras co-overexpression in MCF10A cells also induced features of epithelial-to-mesenchymal transition. Importantly, Bmi-1 inhibited senescence and permitted proliferation of cells expressing high levels of Ras. Examination of various growth-regulatory pathways suggested that Bmi-1 overexpression together with H-Ras promotes HMEC transformation and breast oncogenesis by deregulation of multiple growth-regulatory pathways by p16(INK4a)-independent mechanisms.


Cancer Research | 2007

Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis

Kristin K. Deeb; Aleksandra M. Michalowska; Cheol Yong Yoon; Scott M. Krummey; Mark J. Hoenerhoff; Claudine Kavanaugh; Ming Chung Li; Francesco J. DeMayo; Ilona Linnoila; Chu-Xia Deng; Eva Y.-H. P. Lee; Daniel Medina; Joanna H. Shih; Jeffrey E. Green

Understanding the genetic architecture of cancer pathways that distinguishes subsets of human cancer is critical to developing new therapies that better target tumors based on their molecular expression profiles. In this study, we identify an integrated gene signature from multiple transgenic models of epithelial cancers intrinsic to the functions of the Simian virus 40 T/t-antigens that is associated with the biological behavior and prognosis for several human epithelial tumors. This genetic signature, composed primarily of genes regulating cell replication, proliferation, DNA repair, and apoptosis, is not a general cancer signature. Rather, it is uniquely activated primarily in tumors with aberrant p53, Rb, or BRCA1 expression but not in tumors initiated through the overexpression of myc, ras, her2/neu, or polyoma middle T oncogenes. Importantly, human breast, lung, and prostate tumors expressing this set of genes represent subsets of tumors with the most aggressive phenotype and with poor prognosis. The T/t-antigen signature is highly predictive of human breast cancer prognosis. Because this class of epithelial tumors is generally intractable to currently existing standard therapies, this genetic signature identifies potential targets for novel therapies directed against these lethal forms of cancer. Because these genetic targets have been discovered using mammary, prostate, and lung T/t-antigen mouse cancer models, these models are rationale candidates for use in preclinical testing of therapies focused on these biologically important targets.


Journal of Clinical Investigation | 2000

Loss of TGF-β signaling contributes to autoimmune pancreatitis

Ki-Baik Hahm; Young Hyuck Im; Cecile Lee; W. Tony Parks; Yung Jue Bang; Jeffrey E. Green; Seong-Jin Kim

Recent observations suggest that immune response is involved in the development of pancreatitis. However, the exact pathogenesis underlying this immune-mediated response is still under debate. TGF-β has been known to be an important regulating factor in maintaining immune homeostasis. To determine the role of TGF-β in the initiation or progression of pancreatitis, TGF-β signaling was inactivated in mouse pancreata by overexpressing a dominant-negative mutant form of TGF-β type II receptor in the pancreas, under control of the pS2 mouse trefoil peptide promoter. Transgenic mice showed marked increases in MHC class II molecules and matrix metalloproteinase expression in pancreatic acinar cells. These mice also showed increased susceptibility to cerulein-induced pancreatitis. This pancreatitis was characterized by severe pancreatic edema, inflammatory cell infiltration, T- and B-cell hyperactivation, IgG-type autoantibodies against pancreatic acinar cells, and IgM-type autoantibodies against pancreatic ductal epithelial cells. Therefore, TGF-β signaling seems to be essential either in maintaining the normal immune homeostasis and suppressing autoimmunity or in preserving the integrity of pancreatic acinar cells.


Breast Cancer Research | 2000

Metastases: the glycan connection

Christine Couldrey; Jeffrey E. Green

An association between protein glycosylation and tumorigenesis has been recognized for over 10 years. Associations linking the importance of glycosylation events to tumor biology, especially the progression to metastatic disease, have been noted over many years, Recently, a mouse model in which β1,6-N-acetylglucosaminyltransferase V (a rate-limiting enzyme in the N-glycan pathway) has been knocked out, was used to demonstrate the importance of glycosylation in tumor progression. By crossing mice lacking this enzyme with a transgenic mouse model of metastatic breast cancer, metastatic progression of the disease was dramatically reduced. These experiments provide in vivo evidence for the role of N-linked glycosylation in metastatic breast cancer and have significant implications for the development of new treatment strategies.

Collaboration


Dive into the Jeffrey E. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min-Ling Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Miriam R. Anver

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerrold M. Ward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Couldrey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel Medina

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lalage M. Wakefield

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge