Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey F. Ohren is active.

Publication


Featured researches published by Jeffrey F. Ohren.


Nature Structural & Molecular Biology | 2004

Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition.

Jeffrey F. Ohren; Huifen Chen; Alexander Pavlovsky; Christopher Whitehead; Erli Zhang; Peter Kuffa; Chunhong Yan; Patrick McConnell; Cindy Spessard; Craig Banotai; W. Thomas Mueller; Amy Delaney; Charles Omer; Judith Sebolt-Leopold; David T. Dudley; Iris K. Leung; Cathlin Marie Flamme; Joseph Scott Warmus; Michael Kaufman; Stephen Douglas Barrett; Haile Tecle; Charles A. Hasemann

MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 Å and 3.2 Å, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes

Qing Jun Meng; Elizabeth S. Maywood; David A. Bechtold; Wei Qun Lu; Jian Li; Julie Gibbs; Sandrine M. Dupre; Johanna E. Chesham; Francis Rajamohan; John D. Knafels; Blossom Sneed; Laura E. Zawadzke; Jeffrey F. Ohren; Kevin Walton; Travis T. Wager; Michael H. Hastings; Andrew Loudon

Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) ε or δ can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1ε and CK1δ using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1δ is the principal regulator of the clock period: pharmacological inhibition of CK1δ, but not CK1ε, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1δ inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1δ inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2−/− mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2−/− mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1δ offers an avenue for therapeutic modulation of perturbed circadian behavior.


Journal of Pharmacology and Experimental Therapeutics | 2009

Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period.

Kevin Walton; Katherine Fisher; David M. Rubitski; Michael Marconi; Qing Jun Meng; Martin Sládek; Jessica Adams; Michael Bass; Rama Y. Chandrasekaran; Todd William Butler; Matt Griffor; Francis Rajamohan; Megan Serpa; Yuhpyng Chen; Michelle Claffey; Michael H. Hastings; Andrew Loudon; Elizabeth S. Maywood; Jeffrey F. Ohren; Angela C. Doran; Travis T. Wager

The circadian clock links our daily cycles of sleep and activity to the external environment. Deregulation of the clock is implicated in a number of human disorders, including depression, seasonal affective disorder, and metabolic disorders. Casein kinase 1 epsilon (CK1ϵ) and casein kinase 1 delta (CK1δ) are closely related Ser-Thr protein kinases that serve as key clock regulators as demonstrated by mammalian mutations in each that dramatically alter the circadian period. Therefore, inhibitors of CK1δ/ϵ may have utility in treating circadian disorders. Although we previously demonstrated that a pan-CK1δ/ϵ inhibitor, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), causes a significant phase delay in animal models of circadian rhythm, it remains unclear whether one of the kinases has a predominant role in regulating the circadian clock. To test this, we have characterized 3-(3-chloro-phenoxymethyl)-1-(tetrahydro-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine (PF-4800567), a novel and potent inhibitor of CK1ϵ (IC50 = 32 nM) with greater than 20-fold selectivity over CK1δ. PF-4800567 completely blocks CK1ϵ-mediated PER3 nuclear localization and PER2 degradation. In cycling Rat1 fibroblasts and a mouse model of circadian rhythm, however, PF-4800567 has only a minimal effect on the circadian clock at concentrations substantially over its CK1ϵ IC50. This is in contrast to the pan-CK1δ/ϵ inhibitor PF-670462 that robustly alters the circadian clock under similar conditions. These data indicate that CK1ϵ is not the predominant mediator of circadian timing relative to CK1δ. PF-4800567 should prove useful in probing unique roles between these two kinases in multiple signaling pathways.


Bioorganic & Medicinal Chemistry Letters | 2008

2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase).

Joseph Scott Warmus; Cathlin Marie Flamme; Lu Yan Zhang; Stephen Douglas Barrett; Alexander James Bridges; Huifen Chen; Richard Gowan; Michael Kaufman; Judy Sebolt-Leopold; Wilbur R. Leopold; Ronald Merriman; Jeffrey F. Ohren; Alexander Pavlovsky; Sally Przybranowski; Haile Tecle; Heather Valik; Christopher Whitehead; Erli Zhang

This paper reports a second generation MEK inhibitor. The previously reported potent and efficacious MEK inhibitor, PD-184352 (CI-1040), contains an integral hydroxamate moiety. This compound suffered from less than ideal solubility and metabolic stability. An oxadiazole moiety behaves as a bioisostere for the hydroxamate group, leading to a more metabolically stable and efficacious MEK inhibitor.


Journal of Medicinal Chemistry | 2011

Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-gamma.

Agustin Casimiro-Garcia; Gary Frederick Filzen; Declan Flynn; Christopher Franklin Bigge; Jing Chen; Jo Ann Davis; Danette Andrea Dudley; Jeremy John Edmunds; Nadia Esmaeil; Andrew Geyer; Ronald J. Heemstra; Mehran Jalaie; Jeffrey F. Ohren; Robert Ostroski; Teresa Ellis; Robert P. Schaum; Chad L. Stoner

Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.


Protein Science | 2007

Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU)

Igor Mochalkin; Sandra Lightle; Yaqi Zhu; Jeffrey F. Ohren; Cindy Spessard; Nickolay Y. Chirgadze; Craig Banotai; Michael Melnick; Laura McDowell

N‐Acetylglucosamine‐1‐phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram‐positive and Gram‐negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X‐ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active‐site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate‐binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo‐like conformation until N‐acetylglucosamine‐1‐phosphate (GlcNAc‐1‐P) binds and induces a conformational change at the GlcNAc‐binding subsite. Following the binding of GlcNAc‐1‐P to the UTP‐charged uridyltransferase active site, the non‐esterified oxygen of GlcNAc‐1‐P performs a nucleophilic attack on the α‐phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure‐guided design of novel antibacterial agents targeting GlmU activity.


Bioorganic & Medicinal Chemistry Letters | 2009

Beyond the MEK-pocket: can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK?

Haile Tecle; J Shao; Y Li; M Kothe; Steven Kazmirski; J Penzotti; Yuan-Hua Ding; Jeffrey F. Ohren; D Moshinsky; Rocco Coli; N Jhawar; E Bora; S Jacques-O'Hagan; Joe C. Wu

An approach and preliminary results for utilizing legacy MEK inhibitors as templates for a reiterative structural based design and synthesis of novel, type III NCKIs (non-classical kinase inhibitors) is described. Evidence is provided that the MEK-pocket or pockets closely related to it may exist in kinases other than MEK.


Bioorganic & Medicinal Chemistry | 2008

Effects of modifications of the linker in a series of phenylpropanoic acid derivatives : Synthesis, evaluation as PPARα/γ dual agonists, and X-ray crystallographic studies

Agustin Casimiro-Garcia; Christopher F. Bigge; Jo Ann Davis; Teresa Padalino; James Pulaski; Jeffrey F. Ohren; Patrick McConnell; Christopher D. Kane; Lori Royer; Kimberly A. Stevens; Bruce Auerbach; Wendy Collard; Christine McGregor; Stephen A. Fakhoury; Robert P. Schaum; Hairong Zhou

A new series of alpha-aryl or alpha-heteroarylphenyl propanoic acid derivatives was synthesized that incorporate acetylene-, ethylene-, propyl-, or nitrogen-derived linkers as a replacement of the commonly used ether moiety that joins the central phenyl ring with the lipophilic tail. The effect of these modifications in the binding and activation of PPARalpha and PPARgamma was first evaluated in vitro. Compounds possessing suitable profiles were then evaluated in the ob/ob mouse model of type 2 diabetes. The propylene derivative 40 and the propyl derivative 53 demonstrated robust plasma glucose lowering activity in this model. Compound 53 was also evaluated in male Zucker diabetic fatty rats and was found to achieve normalization of glucose, triglycerides, and insulin levels. An X-ray crystal structure of the complex of 53 with the PPARgamma-ligand-binding domain was obtained and discussed in this report.


Bioorganic & Medicinal Chemistry | 2009

Synthesis and evaluation of novel α-heteroaryl-phenylpropanoic acid derivatives as PPARα/γ dual agonists

Agustin Casimiro-Garcia; Christopher F. Bigge; Jo Ann Davis; Teresa Padalino; James Pulaski; Jeffrey F. Ohren; Patrick McConnell; Christopher D. Kane; Lori Royer; Kimberly A. Stevens; Bruce Auerbach; Wendy Collard; Christine McGregor; Kun Song

The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the alpha-position and their evaluation for binding and activation of PPARalpha and PPARgamma are presented in this report. Among the new compounds, (S)-3-{4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPARalpha/gamma dual agonist (EC(50)=0.013 and 0.061 microM, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies.


Recent results in cancer research | 2007

The Mitogen-Activated Protein Kinase Pathway for Molecular-Targeted Cancer Treatment

Judith Sebolt-Leopold; Roman Herrera; Jeffrey F. Ohren

The molecular characterization of key events associated with tumor initiation and progression has led to the identification of cellular signaling pathways that contribute not only to normal cell functioning but also to the overall phenotype associated with cancer. One such example is the Ras-regulated kinase pathway. This signaling module, comprising Raf, mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK), plays a central role in regulating a broad range of cellular events. In response to a diverse group of extracellular stimuli including growth factors, cytokines, and protooncogenes, activation of this pathway results in alterations in cell proliferation, differentiation, and survival. It is therefore not surprising that this pathway has been found to be upregulated in a large percentage of human tumors. While contributing to the uncontrolled growth and enhanced survival of tumor cells, the Ras-MAP kinase pathway also plays a key role in their metastatic spread by regulating cell motility and invasion.

Collaboration


Dive into the Jeffrey F. Ohren's collaboration.

Researchain Logo
Decentralizing Knowledge