Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey G. Andrews is active.

Publication


Featured researches published by Jeffrey G. Andrews.


IEEE Communications Magazine | 2008

Femtocell networks: a survey

Vikram Chandrasekhar; Jeffrey G. Andrews; Alan Gatherer

The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.


IEEE Journal on Selected Areas in Communications | 2014

What Will 5G Be

Jeffrey G. Andrews; Stefano Buzzi; Wan Choi; Stephen V. Hanly; Angel Lozano; Anthony C. K. Soong; Jianzhong Charlie Zhang

What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.


IEEE Transactions on Communications | 2011

A Tractable Approach to Coverage and Rate in Cellular Networks

Jeffrey G. Andrews; François Baccelli; Radha Krishna Ganti

Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.


IEEE Journal on Selected Areas in Communications | 2009

Stochastic geometry and random graphs for the analysis and design of wireless networks

Martin Haenggi; Jeffrey G. Andrews; François Baccelli; Olivier Dousse; Massimo Franceschetti

Wireless networks are fundamentally limited by the intensity of the received signals and by their interference. Since both of these quantities depend on the spatial location of the nodes, mathematical techniques have been developed in the last decade to provide communication-theoretic results accounting for the networks geometrical configuration. Often, the location of the nodes in the network can be modeled as random, following for example a Poisson point process. In this case, different techniques based on stochastic geometry and the theory of random geometric graphs -including point process theory, percolation theory, and probabilistic combinatorics-have led to results on the connectivity, the capacity, the outage probability, and other fundamental limits of wireless networks. This tutorial article surveys some of these techniques, discusses their application to model wireless networks, and presents some of the main results that have appeared in the literature. It also serves as an introduction to the field for the other papers in this special issue.


IEEE Journal on Selected Areas in Communications | 2012

Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

Harpreet S. Dhillon; Radha Krishna Ganti; François Baccelli; Jeffrey G. Andrews

Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given \sinr, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.


IEEE Transactions on Wireless Communications | 2005

Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints

Zukang Shen; Jeffrey G. Andrews; Brian L. Evans

Multiuser orthogonal frequency division multiplexing (MU-OFDM) is a promising technique for achieving high downlink capacities in future cellular and wireless local area network (LAN) systems. The sum capacity of MU-OFDM is maximized when each subchannel is assigned to the user with the best channel-to-noise ratio for that subchannel, with power subsequently distributed by water-filling. However, fairness among the users cannot generally be achieved with such a scheme. In this paper, a set of proportional fairness constraints is imposed to assure that each user can achieve a required data rate, as in a system with quality of service guarantees. Since the optimal solution to the constrained fairness problem is extremely computationally complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. In the proposed algorithm, subchannel allocation is first performed by assuming an equal power distribution. An optimal power allocation algorithm then maximizes the sum capacity while maintaining proportional fairness. The proposed algorithm is shown to achieve about 95% of the optimal capacity in a two-user system, while reducing the complexity from exponential to linear in the number of subchannels. It is also shown that with the proposed resource allocation algorithm, the sum capacity is distributed more fairly and flexibly among users than the sum capacity maximization method.


IEEE Communications Magazine | 2005

Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential

Arunabha Ghosh; David R. Wolter; Jeffrey G. Andrews; Runhua Chen

The IEEE 802.16 family of standards and its associated industry consortium, WiMax, promise to deliver high data rates over large areas to a large number of users in the near future. This exciting addition to current broadband options such as DSL, cable, and WiFi promises to rapidly provide broadband access to locations in the worlds rural and developing areas where broadband is currently unavailable, as well as competing for urban market share. WiMaxs competitiveness in the marketplace largely depends on the actual data rates and ranges that are achieved, but this has been difficult to judge due to the large number of possible options and competing marketing claims. This article first provides a tutorial overview of 802.16. Then, based on extensive recent studies, this article presents the realistic attainable throughput and performance of expected WiMax compatible systems based on the 802.16d standard approved in June 2004 (now named 802.16-2004). We also suggest future enhancements to the standard that could at least quadruple the achievable data rate, while also increasing the robustness and coverage, with only moderate complexity increases


IEEE Transactions on Wireless Communications | 2009

Power control in two-tier femtocell networks

Vikram Chandrasekhar; Jeffrey G. Andrews; Tarik Muharemovic; Zukang Shen; Alan Gatherer

In a two tier cellular network - comprised of a central macrocell underlaid with shorter range femtocell hotspots - cross-tier interference limits overall capacity with universal frequency reuse. To quantify near-far effects with universal frequency reuse, this paper derives a fundamental relation providing the largest feasible cellular Signal-to-Interference-Plus-Noise Ratio (SINR), given any set of feasible femtocell SINRs. We provide a link budget analysis which enables simple and accurate performance insights in a two-tier network. A distributed utility- based SINR adaptation at femtocells is proposed in order to alleviate cross-tier interference at the macrocell from cochannel femtocells. The Foschini-Miljanic (FM) algorithm is a special case of the adaptation. Each femtocell maximizes their individual utility consisting of a SINR based reward less an incurred cost (interference to the macrocell). Numerical results show greater than 30% improvement in mean femtocell SINRs relative to FM. In the event that cross-tier interference prevents a cellular user from obtaining its SINR target, an algorithm is proposed that reduces transmission powers of the strongest femtocell interferers. The algorithm ensures that a cellular user achieves its SINR target even with 100 femtocells/cell-site (with typical cellular parameters) and requires a worst case SINR reduction of only 16% at femtocells. These results motivate design of power control schemes requiring minimal network overhead in two-tier networks with shared spectrum.


IEEE Transactions on Wireless Communications | 2012

Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive Downlink SINR Analysis

Han-Shin Jo; Young Jin Sang; Ping Xia; Jeffrey G. Andrews

In this paper we develop a tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies. The HCN is modeled as a multi-tier cellular network where each tiers base stations (BSs) are randomly located and have a particular transmit power, path loss exponent, spatial density, and bias towards admitting mobile users. For example, as compared to macrocells, picocells would usually have lower transmit power, higher path loss exponent (lower antennas), higher spatial density (many picocells per macrocell), and a positive bias so that macrocell users are actively encouraged to use the more lightly loaded picocells. In the present paper we implicitly assume all base stations have full queues; future work should relax this. For this model, we derive the outage probability of a typical user in the whole network or a certain tier, which is equivalently the downlink SINR cumulative distribution function. The results are accurate for all SINRs, and their expressions admit quite simple closed-forms in some plausible special cases. We also derive the average ergodic rate of the typical user, and the minimum average user throughput - the smallest value among the average user throughputs supported by one cell in each tier. We observe that neither the number of BSs or tiers changes the outage probability or average ergodic rate in an interference-limited full-loaded HCN with unbiased cell association (no biasing), and observe how biasing alters the various metrics.


IEEE Transactions on Wireless Communications | 2013

User Association for Load Balancing in Heterogeneous Cellular Networks

Qiaoyang Ye; Beiyu Rong; Yudong Chen; Mazin Al-Shalash; Constantine Caramanis; Jeffrey G. Andrews

For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rate for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor Aj ≥ 1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully. Numerical results show a large (3.5x) throughput gain for cell-edge users and a 2x rate gain for median users relative to a maximizing received power association.

Collaboration


Dive into the Jeffrey G. Andrews's collaboration.

Top Co-Authors

Avatar

Robert W. Heath

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Radha Krishna Ganti

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Baccelli

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kaibin Huang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Sarabjot Singh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge