Jeffrey G. Mellott
Northeast Ohio Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey G. Mellott.
Hearing Research | 2011
Brett R. Schofield; Susan D. Motts; Jeffrey G. Mellott
Acetylcholine (ACh) is a neuromodulator that is likely to play a role in plasticity as well as other phenomena at many sites in the auditory system. The auditory cortex receives cholinergic innervation from the basal forebrain, whereas the cochlea receives cholinergic innervation from the superior olivary complex. Much of the remainder of the auditory pathways receives innervation from the pedunculopontine and laterodorsal tegmental nuclei, two nuclei referred to collectively as the pontomesencephalic tegmentum (PMT). The PMT provides the major source of ACh to the auditory thalamus and the midbrain, and is a substantial source (in addition to the superior olivary complex) of ACh in the cochlear nucleus. Individual cholinergic cells in the PMT often have axon branches that innervate multiple auditory nuclei, including nuclei on both sides of the brain as well as nuclei at multiple levels of the auditory system. The auditory cortex has direct axonal projections to the PMT cells, including cholinergic cells that project to the inferior colliculus or cochlear nucleus. The divergent projections of PMT cholinergic cells suggest widespread effects on the auditory pathways. These effects are likely to include plasticity as well as novelty detection, sensory gating, reward behavior, arousal and attention. Descending projections from the forebrain, including the auditory cortex, are likely to provide a high level of cognitive input to these cholinergic effects. Dysfunction associated with the cholinergic system may play a role in disorders such as tinnitus and schizophrenia.
Neuroscience | 2011
Jeffrey G. Mellott; Susan D. Motts; Brett R. Schofield
Acetylcholine (Ach) affects a variety of cell types in the cochlear nucleus (CN) and is likely to play a role in numerous functions. Previous work in rats suggested that the acetylcholine arises from cells in the superior olivary complex, including cells that have axonal branches that innervate both the CN and the cochlea (i.e. olivocochlear cells) as well as cells that innervate only the CN. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase to identify the source of ACh in the CN of guinea pigs. The results confirm a projection from cholinergic cells in the superior olivary complex to the CN. In addition, we identified a substantial number of cholinergic cells in the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT) that project to the CN. On average, the PPT and LDT together contained about 26% of the cholinergic cells that project to CN, whereas the superior olivary complex contained about 74%. A small number of additional cholinergic cells were located in other areas, including the parabrachial nuclei.The results highlight a substantial cholinergic projection from the pontomesencephalic tegmentum (PPT and LDT) in addition to a larger projection from the superior olivary complex. These different sources of cholinergic projections to the CN are likely to serve different functions. Projections from the superior olivary complex are likely to serve a feedback role, and may be closely tied to olivocochlear functions. Projections from the pontomesencephalic tegmentum may play a role in such things as arousal and sensory gating. Projections from each of these areas, and perhaps even the smaller sources of cholinergic inputs, may be important in conditions such as tinnitus as well as in normal acoustic processing.
Frontiers in Neuroanatomy | 2014
Brett R. Schofield; Susan D. Motts; Jeffrey G. Mellott; Nichole L. Foster
Direct projections from the cochlear nucleus (CN) to the medial geniculate body (MG) mediate a high-speed transfer of acoustic information to the auditory thalamus. Anderson etal. (2006) used anterograde tracers to label the projection from the dorsal CN (DCN) to the MG in guinea pigs. We examined this pathway with retrograde tracers. The results confirm a pathway from the DCN, originating primarily from the deep layers. Labeled cells included a few giant cells and a larger number of small cells of unknown type. Many more labeled cells were present in the ventral CN (VCN). These cells, identifiable as multipolar (stellate) or small cells, were found throughout much of the VCN. Most of the labeled cells were located contralateral to the injection site. The CN to MG pathway bypasses the inferior colliculus (IC), where most ascending auditory information is processed. Anderson etal. (2006) hypothesized that CN-MG axons are collaterals of axons that reach the IC. We tested this hypothesis by injecting different fluorescent tracers into the MG and IC and examining the CN for double-labeled cells. After injections on the same side of the brain, double-labeled cells were found in the contralateral VCN and DCN. Most double-labeled cells were in the VCN, where they accounted for up to 37% of the cells labeled by the MG injection. We conclude that projections from the CN to the MG originate from the VCN and, less so, from the DCN. A significant proportion of the cells send a collateral projection to the IC. Presumably, the collateral projections send the same information to both the MG and the IC. The results suggest that T-stellate cells of the VCN are a major source of direct projections to the auditory thalamus.
Frontiers in Neuroanatomy | 2014
Nichole L. Foster; Jeffrey G. Mellott; Brett R. Schofield
Perineuronal nets (PNs) are aggregates of extracellular matrix that have been associated with neuronal plasticity, critical periods, fast-spiking cells and protection from oxidative stress. Although PNs have been reported in the auditory system in several species, there is disagreement about the distribution of PNs within the inferior colliculus (IC), an important auditory hub in the midbrain. Furthermore, PNs in many brain areas are preferentially associated with GABAergic cells, but whether such an association exists in the IC has not been addressed. We used Wisteria floribunda agglutinin staining and immunohistochemistry in guinea pigs to examine PNs within the IC. PNs are present in all IC subdivisions and are densest in the central portions of the IC. Throughout the IC, PNs are preferentially associated with GABAergic cells. Not all GABAergic cells are surrounded by PNs, so the presence of PNs can be used to subdivide IC GABAergic cells into “netted” and “non-netted” categories. Finally, PNs in the IC, like those in other brain areas, display molecular heterogeneity that suggests a multitude of functions.
Frontiers in Neuroanatomy | 2013
Kyle T. Nakamoto; Jeffrey G. Mellott; Jeanette Killius; Megan Storey-Workley; Colleen S. Sowick; Brett R. Schofield
Projections from auditory cortex (AC) can alter the responses of cells in the inferior colliculus (IC) to sounds. Most IC cells show excitation and inhibition after stimulation of the AC. AC axons release glutamate and excite their targets, so inhibition is presumed to result from cortical activation of GABAergic IC cells that inhibit other IC cells via local projections. However, it is not known whether cortical axons contact GABAergic IC cells directly. We labeled corticocollicular axons by injecting fluorescent dextrans into the AC in guinea pigs. We visualized the tracer with diaminobenzidine and processed the tissue for electron microscopy. We identified presumptive GABAergic profiles with post-embedding anti-GABA immunogold histochemistry on ultrathin sections. We identified dextran-labeled cortical boutons in the IC and identified their postsynaptic targets according to morphology (e.g., spine, dendrite) and GABA-reactivity. Cortical synapses were observed in all IC subdivisions, but were comparatively rare in the central nucleus. Cortical boutons contain round vesicles and few mitochondria. They form asymmetric synapses with spines (most frequently), dendritic shafts and, least often, with cell bodies. Excitatory boutons in the IC can be classified as large, medium or small; most cortical boutons belong to the small excitatory class, while a minority (~14%) belong to the medium excitatory class. Approximately 4% of the cortical targets were GABA-positive; these included dendritic shafts, spines, and cell bodies. We conclude that the majority of cortical boutons contact non-GABAergic (i.e., excitatory) IC cells and a small proportion (4%) contact GABAergic cells. Given that most IC cells show inhibition (as well as excitation) after cortical stimulation, it is likely that the majority of cortically-driven inhibition in the IC results from cortical activation of a relatively small number of IC GABAergic cells that have extensive local axons.
Frontiers in Neuroanatomy | 2014
Jeffrey G. Mellott; Nichole L. Foster; Andrew P. Ohl; Brett R. Schofield
Individual subdivisions of the medial geniculate body (MG) receive a majority of their ascending inputs from 1 or 2 subdivisions of the inferior colliculus (IC). This establishes parallel pathways that provide a model for understanding auditory projections from the IC through the MG and on to auditory cortex. A striking discovery about the tectothalamic circuit was identification of a substantial GABAergic component. Whether GABAergic projections match the parallel pathway organization has not been examined. We asked whether the parallel pathway concept is reflected in guinea pig tectothalamic pathways and to what degree GABAergic cells contribute to each pathway. We deposited retrograde tracers into individual MG subdivisions (ventral, MGv; medial, MGm; dorsal, MGd; suprageniculate, MGsg) to label tectothalamic cells and used immunochemistry to identify GABAergic cells. The MGv receives most of its IC input (~75%) from the IC central nucleus (ICc); MGd and MGsg receive most of their input (~70%) from IC dorsal cortex (ICd); and MGm receives substantial input from both ICc (~40%) and IC lateral cortex (~40%). Each MG subdivision receives additional input (up to 32%) from non-dominant IC subdivisions, suggesting cross-talk between the pathways. The proportion of GABAergic cells in each pathway depended on the MG subdivision. GABAergic cells formed ~20% of IC inputs to MGv or MGm, ~11% of inputs to MGd, and 4% of inputs to MGsg. Thus, non-GABAergic (i.e., glutamatergic) cells are most numerous in each pathway with GABAergic cells contributing to different extents. Despite smaller numbers of GABAergic cells, their distributions across IC subdivisions mimicked the parallel pathways. Projections outside the dominant pathways suggest opportunities for excitatory and inhibitory crosstalk. The results demonstrate parallel tectothalamic pathways in guinea pigs and suggest numerous opportunities for excitatory and inhibitory interactions within and between pathways.
Frontiers in Neuroanatomy | 2014
Brett R. Schofield; Jeffrey G. Mellott; Susan D. Motts
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives.
The Journal of Neuroscience | 2016
Nichole L. Beebe; Jesse W. Young; Jeffrey G. Mellott; Brett R. Schofield
Inhibition plays an important role in shaping responses to stimuli throughout the CNS, including in the inferior colliculus (IC), a major hub in both ascending and descending auditory pathways. Subdividing GABAergic cells has furthered the understanding of inhibition in many brain areas, most notably in the cerebral cortex. Here, we seek the same understanding of subcortical inhibitory cell types by combining staining for two types of extracellular markers—perineuronal nets (PNs) and perisomatic rings of terminals expressing vesicular glutamate transporter 2 (VGLUT2) —to subdivide IC GABAergic cells in adult guinea pigs. We found four distinct groups of GABAergic cells in the IC: (1) those with both a PN and a VGLUT2 ring; (2) those with only a PN; (3) those with only a VGLUT2 ring; and (4) those with neither marker. In addition, these four GABAergic subtypes differ in their soma size and distribution among IC subdivisions. Functionally, the presence or absence of VGLUT2 rings indicates differences in inputs, whereas the presence or absence of PNs indicates different potential for plasticity and temporal processing. We conclude that these markers distinguish four GABAergic subtypes that almost certainly serve different roles in the processing of auditory stimuli within the IC. SIGNIFICANCE STATEMENT GABAergic inhibition plays a critical role throughout the brain. Identification of subclasses of GABAergic cells (up to 15 in the cerebral cortex) has furthered the understanding of GABAergic roles in circuit modulation. Inhibition is also prominent in the inferior colliculus, a subcortical hub in auditory pathways. Here, we use two extracellular markers to identify four distinct groups of GABAergic cells. Perineuronal nets and perisomatic rings of glutamatergic boutons are present in many subcortical areas and often are associated with inhibitory cells, but they have rarely been used to identify inhibitory subtypes. Our results further the understanding of inhibition in the inferior colliculus and suggest that these extracellular molecular markers may provide a key to distinguishing inhibitory subtypes in many subcortical areas.
Frontiers in Neuroanatomy | 2014
Jeffrey G. Mellott; Nichole L. Foster; Kyle T. Nakamoto; Susan D. Motts; Brett R. Schofield
A GABAergic component has been identified in the projection from the inferior colliculus (IC) to the medial geniculate body (MG) in cats and rats. We sought to determine if this GABAergic pathway exists in guinea pig, a species widely used in auditory research. The guinea pig IC contains GABAergic cells, but their relative abundance in the IC and their relative contributions to tectothalamic projections are unknown. We identified GABAergic cells with immunochemistry for glutamic acid decarboxylase (GAD) and determined that ~21% of IC neurons are GABAergic. We then combined retrograde tracing with GAD immunohistochemistry to identify the GABAergic tectothalamic projection. Large injections of Fast Blue, red fluorescent beads or FluoroGold were deposited to include all subdivisions of the MG. The results demonstrate a GABAergic pathway from each IC subdivision to the ipsilateral MG. GABAergic cells constitute ~22% of this ipsilateral pathway. In addition, each subdivision of the IC had a GABAergic projection to the contralateral MG. Measured by number of tectothalamic cells, the contralateral projection is about 10% of the size of the ipsilateral projection. GABAergic cells constitute about 20% of the contralateral projection. In summary, the results demonstrate a tectothalamic projection in guinea pigs that originates in part from GABAergic cells that project ipsilaterally or contralaterally to the MG. The results show similarities to both rats and cats, and carry implications for the role of GABAergic tectothalamic projections vis-à-vis the presence (in cats) or near absence (in rats and guinea pigs) of GABAergic interneurons in the MG.
Neuroscience | 2013
Kyle T. Nakamoto; Jeffrey G. Mellott; Jeanette Killius; Megan Storey-Workley; Colleen S. Sowick; Brett R. Schofield
The inferior colliculus (IC) integrates ascending auditory input from the lower brainstem and descending input from the auditory cortex. Understanding how IC cells integrate these inputs requires identification of their synaptic arrangements. We describe excitatory synapses in the dorsal cortex, central nucleus, and lateral cortex of the IC (ICd, ICc and IClc) in guinea pigs. We used electron microscopy (EM) and post-embedding anti-GABA immunogold histochemistry on aldehyde-fixed tissue from pigmented adult guinea pigs. Excitatory synapses were identified by round vesicles, asymmetric synaptic junctions, and gamma-aminobutyric acid-immunonegative (GABA-negative) presynaptic boutons. Excitatory synapses constitute ∼60% of the synapses in each IC subdivision. Three types can be distinguished by presynaptic profile area and number of mitochondrial profiles. Large excitatory (LE) boutons are more than 2 μm(2) in area and usually contain five or more mitochondrial profiles. Small excitatory (SE) boutons are usually less than 0.7 μm(2) in area and usually contain 0 or 1 mitochondria. Medium excitatory (ME) boutons are intermediate in size and usually contain 2 to 4 mitochondria. LE boutons are mostly confined to the ICc, while the other two types are present throughout the IC. Dendritic spines are the most common target of excitatory boutons in the IC dorsal cortex, whereas dendritic shafts are the most common target in other IC subdivisions. Finally, each bouton type terminates on both gamma-aminobutyric acid-immunopositive (GABA+) and GABA-negative (i.e., glutamatergic) targets, with terminations on GABA-negative profiles being much more frequent. The ultrastructural differences between the three types of boutons presumably reflect different origins and may indicate differences in postsynaptic effect. Despite such differences in origins, each of the bouton types contact both GABAergic and non-GABAergic IC cells, and could be expected to activate both excitatory and inhibitory IC circuits.