Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey G. Ojemann is active.

Publication


Featured researches published by Jeffrey G. Ojemann.


Journal of Neurosurgery | 1989

CORTICAL LANGUAGE LOCALIZATION IN LEFT, DOMINANT HEMISPHERE. AN ELECTRICAL STIMULATION MAPPING INVESTIGATION IN 117 PATIENTS

George A. Ojemann; Jeffrey G. Ojemann; Ettore Lettich; Mitchel S. Berger

The localization of cortical sites essential for language was assessed by stimulation mapping in the left, dominant hemispheres of 117 patients. Sites were related to language when stimulation at a current below the threshold for afterdischarge evoked repeated statistically significant errors in object naming. The language center was highly localized in many patients to form several mosaics of 1 to 2 sq cm, usually one in the frontal and one or more in the temporoparietal lobe. The area of individual mosaics, and the total area related to language was usually much smaller than the traditional Broca-Wernicke areas. There was substantial individual variability in the exact location of language function, some of which correlated with the patients sex and verbal intelligence. These features were present for patients as young as 4 years and as old as 80 years, and for those with lesions acquired in early life or adulthood. These findings indicate a need for revision of the classical model of language localization. The combination of discrete localization in individual patients but substantial individual variability between patients also has major clinical implications for cortical resections of the dominant hemisphere, for it means that language cannot be reliably localized on anatomic criteria alone. A maximal resection with minimal risk of postoperative aphasia requires individual localization of language with a technique like stimulation mapping.


Journal of Neural Engineering | 2004

A brain–computer interface using electrocorticographic signals in humans

Eric C. Leuthardt; Jonathan R. Wolpaw; Jeffrey G. Ojemann; Daniel W. Moran

Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain.


The Journal of Neuroscience | 2009

Uniquely hominid features of adult human astrocytes.

Nancy Ann Oberheim; Takahiro Takano; Xiaoning Han; Wei He; Jane H.-C. Lin; Fushun Wang; Qiwu Xu; Jeff Wyatt; Webster H. Pilcher; Jeffrey G. Ojemann; Bruce R. Ransom; Steven A. Goldman

Defining the microanatomic differences between the human brain and that of other mammals is key to understanding its unique computational power. Although much effort has been devoted to comparative studies of neurons, astrocytes have received far less attention. We report here that protoplasmic astrocytes in human neocortex are 2.6-fold larger in diameter and extend 10-fold more GFAP (glial fibrillary acidic protein)-positive primary processes than their rodent counterparts. In cortical slices prepared from acutely resected surgical tissue, protoplasmic astrocytes propagate Ca2+ waves with a speed of 36 μm/s, approximately fourfold faster than rodent. Human astrocytes also transiently increase cystosolic Ca2+ in response to glutamatergic and purinergic receptor agonists. The human neocortex also harbors several anatomically defined subclasses of astrocytes not represented in rodents. These include a population of astrocytes that reside in layers 5–6 and extend long fibers characterized by regularly spaced varicosities. Another specialized type of astrocyte, the interlaminar astrocyte, abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers 3 and 4. Human fibrous astrocytes resemble their rodent counterpart but are larger in diameter. Thus, human cortical astrocytes are both larger, and structurally both more complex and more diverse, than those of rodents. On this basis, we posit that this astrocytic complexity has permitted the increased functional competence of the adult human brain.


The Journal of Neuroscience | 2007

Spectral changes in cortical surface potentials during motor movement

Kai J. Miller; Eric C. Leuthardt; Rajesh P. N. Rao; Nicholas R. Anderson; Daniel W. Moran; John W. Miller; Jeffrey G. Ojemann

In the first large study of its kind, we quantified changes in electrocorticographic signals associated with motor movement across 22 subjects with subdural electrode arrays placed for identification of seizure foci. Patients underwent a 5–7 d monitoring period with array placement, before seizure focus resection, and during this time they participated in the study. An interval-based motor-repetition task produced consistent and quantifiable spectral shifts that were mapped on a Talairach-standardized template cortex. Maps were created independently for a high-frequency band (HFB) (76–100 Hz) and a low-frequency band (LFB) (8–32 Hz) for several different movement modalities in each subject. The power in relevant electrodes consistently decreased in the LFB with movement, whereas the power in the HFB consistently increased. In addition, the HFB changes were more focal than the LFB changes. Sites of power changes corresponded to stereotactic locations in sensorimotor cortex and to the results of individual clinical electrical cortical mapping. Sensorimotor representation was found to be somatotopic, localized in stereotactic space to rolandic cortex, and typically followed the classic homunculus with limited extrarolandic representation.


Journal of Neural Engineering | 2007

Decoding two-dimensional movement trajectories using electrocorticographic signals in humans

Jan Kubanek; Kai J. Miller; Nicholas R. Anderson; Eric C. Leuthardt; Jeffrey G. Ojemann; D Limbrick; Daniel W. Moran; Lester A. Gerhardt; Jonathan R. Wolpaw

Signals from the brain could provide a non-muscular communication and control system, a brain-computer interface (BCI), for people who are severely paralyzed. A common BCI research strategy begins by decoding kinematic parameters from brain signals recorded during actual arm movement. It has been assumed that these parameters can be derived accurately only from signals recorded by intracortical microelectrodes, but the long-term stability of such electrodes is uncertain. The present study disproves this widespread assumption by showing in humans that kinematic parameters can also be decoded from signals recorded by subdural electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local motor potential (LMP) provided the most information about movement. Furthermore, features displayed cosine tuning that has previously been described only for signals recorded within the brain. These results suggest that ECoG could be a more stable and less invasive alternative to intracortical electrodes for BCI systems, and could also prove useful in studies of motor function.


Journal of Neural Engineering | 2008

Two-dimensional movement control using electrocorticographic signals in humans

Kai J. Miller; Nicholas R. Anderson; J A Wilson; Matthew D. Smyth; Jeffrey G. Ojemann; Daniel W. Moran; Jonathan R. Wolpaw; Eric C. Leuthardt

We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and imagined or overt motor tasks enables humans to control a computer cursor in two dimensions. Over a brief training period of 12-36 min, each of five human subjects acquired substantial control of particular ECoG features recorded from several locations over the same hemisphere, and achieved average success rates of 53-73% in a two-dimensional four-target center-out task in which chance accuracy was 25%. Our results support the expectation that ECoG-based BCIs can combine high performance with technical and clinical practicality, and also indicate promising directions for further research.


Neuropsychologia | 2003

A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging

Kathleen B. McDermott; Steven E. Petersen; Jason M. Watson; Jeffrey G. Ojemann

A procedure is introduced for using functional magnetic resonance imaging (fMRI) techniques to identify neural regions associated with attention to semantic and phonological aspects of written words within a single group of subjects. Short lists (16 words/list), consisting of visually-presented semantically-related words (bed, rest) or rhyming words (weep, beep) were presented rapidly to subjects, who were asked to attend to the relations among the words. Regions preferentially involved in attention to semantic relations appeared within left anterior/ventral inferior frontal gyrus (IFG, approximate Brodmann Area, BA47), left posterior/dorsal IFG (BA44/45), left superior/middle temporal cortex (BA22/21), left fusiform gyrus (BA37), and right cerebellum. Regions preferentially involved in attention to phonological relations appeared within left inferior frontal cortex (near BA6/44, posterior to the semantic regions within IFG described above) and within bilateral inferior parietal cortex (BA40) and precuneus (BA7). This method is notable in that a comparison of the two tasks within some of the individual subjects revealed activation patterns similar to the group average, especially within left inferior frontal and left superior/middle parietal cortices. This fact combined with the efficiency with which the data can be obtained (here, in about an hour of functional scanning) and the adaptability of the task for many different subject populations suggests a wide range of possibilities for this technique: it could be used to track language development (e.g. in children), compare language organization across subject populations (e.g. for dyslexic or blind subjects), and identify language regions within individuals (e.g. potentially to aid in surgical planning).


PLOS Computational Biology | 2009

Power-law scaling in the brain surface electric potential.

Kai J. Miller; Larry B. Sorensen; Jeffrey G. Ojemann; Marcel den Nijs

Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human cortex. The power spectral density (PSD) of the electric potential has the power-law form from 80 to 500 Hz. This scaling index, , is conserved across subjects, area in the cortex, and local neural activity levels. The shape of the PSD does not change with increases in local cortical activity, but the amplitude, , increases. We observe a “knee” in the spectra at , implying the existence of a characteristic time scale . Below , we explore two-power-law forms of the PSD, and demonstrate that there are activity-related fluctuations in the amplitude of a power-law process lying beneath the rhythms. Finally, we illustrate through simulation how, small-scale, simplified neuronal models could lead to these power-law observations. This suggests a new paradigm of non-oscillatory “asynchronous,” scale-free, changes in cortical potentials, corresponding to changes in mean population-averaged firing rate, to complement the prevalent “synchronous” rhythm-based paradigm.


Neurosurgery | 2010

Is Preoperative Functional Magnetic Resonance Imaging Reliable for Language Areas Mapping in Brain Tumor Surgery? Review of Language Functional Magnetic Resonance Imaging and Direct Cortical Stimulation Correlation Studies

Carlo Giussani; Frank Emmanuel Roux; Jeffrey G. Ojemann; Erik Pietro Sganzerla; David Pirillo; Costanza Papagno

OBJECTIVELanguage functional magnetic resonance imaging (fMRI) has been used extensively in the past decade for both clinical and research purposes. Its integration in the preoperative imaging assessment of brain lesions involving eloquent areas is progressively more diffused in neurosurgical practice. Nevertheless, the reliability of language fMRI is unclear. To understand the reliability of preoperative language fMRI in patients operated on for brain tumors, the surgical studies that compared language fMRI with direct cortical stimulation (DCS) were reviewed. METHODSArticles comparing language fMRI with DCS of language areas were reviewed with attention to the lesion pathology, the magnetic field, the language tasks used pre- and intraoperatively, and the validation modalities adopted to establish the reliability of language fMRI. We tried to explore the effectiveness of language fMRI in gliomas. RESULTSNine language brain mapping studies compared the findings of fMRI with those of DCS. The studies are not homogeneous for tumor types, magnetic fields, pre- and intraoperative language tasks, intraoperative matching criteria, and results. Sensitivity and specificity were calculated in 5 studies (respectively ranging from 59% to 100% and from 0% to 97%). CONCLUSIONThe contradictory results of these studies do not allow consideration of language fMRI as an alternative tool to DCS in brain lesions located in language areas, especially in gliomas because of the pattern of growth of these tumors. However, language fMRI conducted with high magnet fields is a promising brain mapping tool that must be validated by DCS in methodological robust studies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cortical activity during motor execution, motor imagery, and imagery-based online feedback

Kai J. Miller; Eberhard E. Fetz; Marcel den Nijs; Jeffrey G. Ojemann; Rajesh P. N. Rao

Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in “high frequency” (76–100 Hz) and “low frequency” (8–32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was ∼25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.

Collaboration


Dive into the Jeffrey G. Ojemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Miller

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric C. Leuthardt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. S. Park

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge