Jeffrey H. Christiansen
Western General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey H. Christiansen.
Journal of Biological Chemistry | 1996
Heidi Hahn; Jeffrey H. Christiansen; Carol Wicking; Peter G. Zaphiropoulos; Abirami Chidambaram; Bernard Gerrard; Igor Vorechovsky; Allen E. Bale; Rune Toftgård; Michael Dean; Brandon J. Wainwright
Drosophila patched is a segment polarity gene required for the correct patterning of larval segments and imaginal discs during fly development and has a close functional relationship with hedgehog. We have isolated a complete human PATCHED cDNA sequence, which encodes a putative protein of 1296 amino acids, and displays 39% identity and 60% similarity to the Drosophila PATCHED protein. Hydropathy analysis suggests that human PATCHED is an integral membrane protein with a pattern of hydrophobic and hydrophilic stretches nearly identical to that of Drosophila patched. In the developing mouse embryo, patched is initially detected within the ventral neural tube and later in the somites and limb buds. Expression in the limb buds is restricted to the posterior ectoderm surrounding the zone of polarizing activity. The results show that patched is expressed in target tissues of sonic hedgehog, a murine homolog of Drosophila hedgehog suggesting that patched/hedgehog interactions have been conserved during evolution. Human PATCHED maps to human chromosome 9q22.3, the candidate region for the nevoid basal cell carcinoma syndrome. Patched expression is compatible with the congenital defects observed in the nevoid basal cell carcinoma syndrome.
Current Opinion in Cell Biology | 2000
Jeffrey H. Christiansen; Edward G. Coles; David G. Wilkinson
Induction, migration and differentiation of the neural crest are crucial for the development of the vertebrate embryo, and elucidation of the underlying mechanisms remains an important challenge. In the past year, a novel signal regulating the formation of neural crest cells has been identified, and advances have been made in uncovering roles for bone morphogenetic protein signals and for a transcription factor in the onset of neural crest migration. There have been new insights into the migration and plasticity of branchial neural crest cells. Important progress has been made in dissecting the roles of bone morphogenetic protein, Wnt and Notch signalling systems and their associated downstream transcription factors in the control of neural crest cell differentiation.
Mechanisms of Development | 1995
Jeffrey H. Christiansen; Carina L. Dennis; Carol Wicking; Susan J. Monkley; David G. Wilkinson; Brandon J. Wainwright
The Wnt gene family encodes a set of signalling molecules implicated in the development of a wide range of organisms. We have recently cloned partial cDNA sequences of murine Wnt-11 and Wnt-12. Here, we describe the spatio-temporal expression patterns of both genes during mouse embryogenesis. Wnt-11 expression is first detected within the truncus arteriosus from 8.25 dpc. By 9.5 dpc, Wnt-11 expression is detected in the somites at the medial junction of the dermatome and the myotome. Wnt-11 transcripts are also detected in limb bud mesenchyme from the time the bud is first visible. Wnt-12 is detected in the apical ectodermal ridge from 10.5 dpc. The implications of these expression patterns are discussed.
Neuroinformatics | 2003
Richard Baldock; Jonathan Bard; Albert Burger; Nicholas Burton; Jeffrey H. Christiansen; Guangjie Feng; Bill Hill; Derek Houghton; Matthew H. Kaufman; Jianguo Rao; James Sharpe; Allyson Ross; Peter Stevenson; Shanmugasundaram Venkataraman; Andrew M. Waterhouse; Yiya Yang; Duncan Davidson
The Edinburgh Mouse Atlas Project (EMAP) is a time-series of mouse-embryo volumetric models. The models provide a context-free spatial framework onto which structural interpretations and experimental data can be mapped. This enables collation, comparison, and query of complex spatial patterns with respect to each other and with respect to known or hypothesized structure. The atlas also includes a time-dependent anatomical ontology and mapping between the ontology and the spatial models in the form of delineated anatomical regions or tissues. The models provide a natural, graphical context for browsing and visualizing complex data.The Edinburgh Mouse Atlas Gene-Expression Database (EMAGE) is one of the first applications of the EMAP framework and provides a spatially mapped gene-expression database with associated tools for data mapping, submission, and query. In this article, we describe the underlying principles of the Atlas and the gene-expression database, and provide a practical introduction to the use of the EMAP and EMAGE tools, including use of new techniques for whole body gene-expression data capture and mapping.
Nucleic Acids Research | 2010
Lorna Richardson; Shanmugasundaram Venkataraman; Peter Stevenson; Yiya Yang; Nicholas Burton; Jianguo Rao; Malcolm Fisher; Richard Baldock; Duncan Davidson; Jeffrey H. Christiansen
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE.
Nucleic Acids Research | 2006
Jeffrey H. Christiansen; Yiya Yang; Shanmugasundaram Venkataraman; Lorna Richardson; Peter Stevenson; Nicholas Burton; Richard Baldock; Duncan Davidson
EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods.
Nature Biotechnology | 2008
Eric W. Deutsch; Catherine A. Ball; Jules J. Berman; G. Steven Bova; Alvis Brazma; Roger E. Bumgarner; David N. Campbell; Helen C. Causton; Jeffrey H. Christiansen; Fabrice Daian; Delphine Dauga; Duncan Davidson; Gregory Gimenez; Young Ah Goo; Sean M. Grimmond; Thorsten Henrich; Bernhard G. Herrmann; Michael H. Johnson; Martin Korb; Jason C. Mills; Asa Oudes; Helen Parkinson; Laura E. Pascal; Nicolas Pollet; John Quackenbush; Mirana Ramialison; Martin Ringwald; David Salgado; Susanna-Assunta Sansone; Gavin Sherlock
One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.
The EMBO Journal | 1999
Marc G. Wilkinson; Teresa Soto Pino; Sylvie Tournier; Vicky Buck; Humberto Martín; Jeffrey H. Christiansen; David G. Wilkinson; Jonathan B.A. Millar
The fission yeast Sty1/Spc1 mitogen‐activated protein (MAP) kinase is a member of the eukaryotic stress‐activated MAP kinase (SAPK) family. We have identified a protein, Sin1, that interacts with Sty1/Spc1 which is a member of a new evolutionarily conserved gene family. Cells lacking Sin1 display many, but not all, of the phenotypes of cells lacking the Sty1/Spc1 MAP kinase including sterility, multiple stress sensitivity and a cell‐cycle delay. Sin1 is phosphorylated after stress but this is not Sty1/Spc1‐dependent. Importantly, Sin1 is not required for activation of Sty1/Spc1 but is required for stress‐dependent transcription via its substrate, Atf1. We find that in the absence of Sin1, Sty1/Spc1 appears to translocate to the nucleus but Atf1 is not fully phosphorylated and becomes unstable in response to environmental stress. Sin1 is also required for effective transcription via the AP‐1 factor Pap1 but does not prevent its nuclear translocation. Remarkably chimaeric fusions of sin1 with chicken sin1 sequences rescue loss of sin1 function. We conclude that Sin1 is a novel component of the eukaryotic SAPK pathway.
Nucleic Acids Research | 2008
Shanmugasundaram Venkataraman; Peter Stevenson; Yiya Yang; Lorna Richardson; Nicholas Burton; Thomas P. Perry; Paul R. Smith; Richard Baldock; Duncan Davidson; Jeffrey H. Christiansen
EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT).
Mechanisms of Development | 2001
Jeffrey H. Christiansen; Edward G. Coles; Vicky Robinson; Andrea Pasini; David G. Wilkinson
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.